|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题07 截长补短证全等-八年级数学上册常考点微专题提分精练(浙教版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题07 截长补短证全等(原卷版).docx
    • 解析
      专题07 截长补短证全等(解析版).docx
    专题07 截长补短证全等-八年级数学上册常考点微专题提分精练(浙教版)01
    专题07 截长补短证全等-八年级数学上册常考点微专题提分精练(浙教版)02
    专题07 截长补短证全等-八年级数学上册常考点微专题提分精练(浙教版)03
    专题07 截长补短证全等-八年级数学上册常考点微专题提分精练(浙教版)01
    专题07 截长补短证全等-八年级数学上册常考点微专题提分精练(浙教版)02
    专题07 截长补短证全等-八年级数学上册常考点微专题提分精练(浙教版)03
    还剩4页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙教版八年级上册1.3 证明随堂练习题

    展开
    这是一份浙教版八年级上册1.3 证明随堂练习题,文件包含专题07截长补短证全等解析版docx、专题07截长补短证全等原卷版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。

    
    专题07 截长补短证全等
    1.如图,∠A=2∠C,,平分,,,则_____.

    【答案】4
    【解析】
    【分析】
    在BC上截取BE=AB,利用“边角边”证明△ABD≌△EBD,根据全等三角形对应边相等可得DE=AD,由全等三角形对应角相等可得∠BED=∠A,然后求出∠C=∠CDE,根据等角对等边可得CE=DE,等量代换得到EC=AD,则BC=BE+EC=AB+AD即可求出AD长.
    【详解】
    解:(1)在BC上截取BE=BA,如图,

    ∵BD平分∠ABC,
    ∴∠ABD=∠EBD,
    在△ABD和△BED中,

    ∴△ABD≌△EBD(SAS),
    ∴DE=AD,∠BED=∠A,
    又∵∠A=2∠C,
    ∴∠BED=∠C+∠EDC=2∠C,
    ∴∠EDC=∠C,
    ∴ED=EC,
    ∴EC=AD,
    ∴BC=BE+EC=AB+AD,
    ∵BC=10,AB=6,
    ∴AD=10﹣6=4;
    故答案为:4.
    【点睛】
    本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,等角对等边的性质,作辅助线构造出全等三角形和等腰三角形是解题的关键.
    2.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.

    【答案】证明见解析
    【解析】
    【分析】
    如图,在上截取证明再证明可得 从而可得结论.
    【详解】
    证明:如图,在上截取
    平分










    平分






    【点睛】
    本题考查的是全等三角形的判定与性质,掌握“利用截长补短的方法证明两条线段的和等于另一条线段”是解题的关键.
    3.如图,已知:在中,,、是的角平分线,交于点O求证:.

    【答案】见解析
    【解析】
    【分析】
    在AC上取一点H,使AH=AE,根据角平分线的定义可得∠EAO=∠HAO,然后利用“边角边”证明△AEO和△AHO全等,根据全等三角形对应角相等可得∠AE0=∠AHO,根据角平分线的定义可得∠1=∠2,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3=60°,再根据角平分线的定义和三角形的内角和定理求出∠4=60°,从而得到∠3=∠4,然后利用“边角边”证明△CFO和△CHO全等,根据全等三角形对应边相等可得CF=CH,再根据AC=AH+CH代换即可得证.
    【详解】
    证明:如图,在上取一点H,使,连接.

    ∵是的角平分线,
    ∴,
    在和中,

    ∴,
    ∴,
    ∵是的角平分线,
    ∴,
    ∵,
    ∴,
    ∵、是的角平分线,
    ∴,
    ∴,
    在和中,
    ∴,
    ∴,
    ∵,
    ∴.
    【点睛】
    本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,三角形内角和定理,利用“截长补短”法作辅助线构造出全等三角形是解题的关键.
    4.如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.

    【答案】见解析
    【解析】
    【分析】
    法一:因为AB>AC,所以在AB上截取线段AE=AC,则BE=AB-AC,连接EM,在△BME中,显然有MB-ME<BE,再证明ME=MC,则结论成立.
    法二:延长AC至H,在AH上截取线段AB=AG,证明△ABM≌△AGM,得到BM=GM,根据三角形的三边关系即可求解.
    【详解】
    证明:法一:在AB上截取AE=AC,连接ME,

    在△MBE中,MB-ME<BE(三角形两边之差小于第三边),
    ∵AD是∠BAC的平分线,
    ∴,
    在△AMC和△AME中,

    ∴△AMC≌△AME(SAS),
    ∴MC=ME(全等三角形的对应边相等).
    又∵BE=AB-AE,
    ∴BE=AB-AC,
    ∴MB-MC<AB-AC.
    法二:延长AC至H,在AH上截取线段AB=AG,
    同理可证得△ABM≌△AGM(SAS),
    ∴BM=GM,
    ∵在△MCG中MG-MC<CG
    ∴MB-MC<AG-AC= AB-AC
    即MB-MC<AB-AC.

    【点睛】
    本题考查全等三角形的判定和性质,三角形三边关系以及截长补短法,解题关键是作辅助线构造全等三角形.
    5.如图所示,已知AC平分∠BAD,,于点E,判断AB、AD与BE之间有怎样的等量关系,并证明.

    【答案】,证明见解析
    【解析】
    【分析】
    在AB上截取EF,使EF=BE,联结CF.证明,得到,又证明,得到,最后结论可证了.
    【详解】
    证明:在AB上截取EF,使EF=BE,联结CF.

           

    在 和
           
           
           
           


    AC平分∠BAD

    在 和中





    【点睛】
    本题考查三角形全等知识的综合应用,关键在于寻找全等的条件,作适当的辅助线加以证明.
    6.如图,在△ABC中,,,P、Q分别在BC、CA上,并且AP、BQ分别是∠BAC、∠ABC的角平分线.求证:
    (1);
    (2).

    【答案】(1)见解析;(2)见解析
    【解析】
    【分析】
    (1)由三角形的内角和就可以得出∠ABC=80°,再由角平分线的性质就可以得出∠QBC=40°,就有∠QBC=∠C而得出结论;
    (2)延长AB至M,使得BM=BP,连结MP,根据条件就可以得出∠M=∠C,进而证明△AMP≌△ACP就可以得出结论.
    【详解】
    (1)∵BQ是的角平分线,
    ∴.
    ∵,且,,
    ∴,
    ∴,
    ∴,
    ∴;
    (2)延长AB至M,使得,连结MP.
    ∴,
    ∵△ABC中,,
    ∴,
    ∵BQ平分,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵AP平分,
    ∴,
    在△AMP和△ACP中,
    ∵,
    ∴△AMP≌△ACP,
    ∴,
    ∵,,


    【点睛】
    本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    7.如图,四边形中,, ,,M、N分别为AB、AD上的动点,且.求证: .

    【答案】见解析
    【解析】
    【分析】
    延长至点,使得,连接,根据同角的补角相等得,根据证明,则,进而证明,根据证明,得到,则.
    【详解】
    证明:延长至点,使得,连接,
    四边形中,,,

    在和中,


    ,,
    ,,


    在和中,




    【点睛】
    本题主要考查了全等三角形的判定与性质,作辅助线构造全等三角形是解决问题的关键.
    8.如图中,分别平分相交于点.
    (1)求的度数;
    (2)求证:

    【答案】(1)∠CPD=60°;(2)详见解析
    【解析】
    【分析】
    (1)根据三角形的内角和定理及角平分线的定义,三角形的外角性质即可求出;
    (2)在AC上截取AF=AE,先证明△APE≌△APF(SAS),再证明△CFP≌△CDP(ASA),根据全等三角形的性质证明即可.
    【详解】
    解:(1)∵∠ABC=60°,
    ∴∠BAC+∠ACB=180°-60°=120°,
    又∵AD、CE分别平分,
    ∴,
    ∴,
    又∵∠CPD是△ACP的外角,
    ∴∠CPD=∠CAD+∠ACE=60°,
    ∴∠CPD=60°.
    (2)如图,在AC上截取AF=AE,连接PF,
    ∵∠CPD=60°,
    ∴∠APC=120°,∠APE=60°
    ∵AD平分∠BAC,CE平分∠ACB,
    ∴∠BAD=∠CAD,∠ACE=∠BCE
    在△APE与△APF中

    ∴△APE≌△APF(SAS)
    ∴∠APF=∠APE=60°,
    ∴∠CPF=∠AOC-∠APF=60°,
    在△CFP与△CDP中,

    ∴△CFP≌△CDP(ASA)
    ∴CD=CF
    ∴AC=AF+CF=AE+CD,
    即.

    【点睛】
    本题考查了全等三角形的判定及性质、三角形内角和定理与角平分线的角度计算问题,解题的关键是通过在AC上截取AF=AE构造全等三角形.
    9.如图,,点在线段上,、分别是、的角平分线,若,,求的长.

    【答案】5
    【解析】
    【分析】
    如图,在上截取,连接,先证明,得到,,然后证明,得到,即可求出答案.
    【详解】
    解:如图,在上截取,连接,

    是的角平分线,

    在△和△中,


    ,,




    是的角平分线,

    在和中,




    【点睛】
    本题考查了角平分线的性质,平行线的性质,全等三角形的判定和性质,证明是解题关键.
    10.如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD.

    【答案】证明见解析.
    【解析】
    【分析】
    延长EB到G,使BG=DF,连接AG.先说明△ABG≌△ADF,然后利用全等三角形的性质和已知条件证得△AEG≌△AEF,最后再运用全等三角形的性质和线段的和差即可解答.
    【详解】
    延长EB到G,使BG=DF,连接AG.

    ∵∠ABG=∠ABC=∠D=90°,AB=AD,
    ∴△ABG≌△ADF.
    ∴AG=AF,∠1=∠2.   
    ∴∠1+∠3=∠2+∠3=∠EAF=∠BAD.
    ∴∠GAE=∠EAF.
    又∵AE=AE,
    ∴△AEG≌△AEF.
    ∴EG=EF.
    ∵EG=BE+BG.
    ∴EF=BE+FD
    【点睛】
    本题考查了全等三角形的判定与性质,做出辅助线构造全等三角形是解答本题的关键.
    11.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,线段EF、BE、FD之间的关系是 ;(不需要证明)
    (2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.
    (3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.

    【答案】(1)EF=BE+FD;(2)(1)中的结论仍然成立,见解析;(3)结论不成立,EF=BE﹣FD,见解析
    【解析】
    【分析】
    (1)延长CB至G,使BG=DF,连接AG,证明△ABG≌△ADF,根据全等三角形的性质得到AG=AF,∠BAG=∠DAF,再证明△GAE≌△FAE,根据全等三角形的性质得出EF=EG,结合图形计算,证明结论;
    (2)延长CB至M,使BM=DF,连接AM,仿照(1)的证明方法解答;
    (3)在EB上截取BH=DF,连接AH,仿照(1)的证明方法解答.
    【详解】
    解:(1)EF=BE+FD,
    理由如下:如图1,延长CB至G,使BG=DF,连接AG,

    在△ABG和△ADF中,

    ∴△ABG≌△ADF(SAS),
    ∴AG=AF,∠BAG=∠DAF,
    ∵∠EAF=∠BAD,
    ∴∠DAF+∠BAE=∠EAF,
    ∴∠GAE=∠BAG+∠BAE=∠DAF+∠BAE=∠EAF,
    在△GAE和△FAE中,

    ∴△GAE≌△FAE(SAS),
    ∴EF=EG,
    ∵EG=BG+BE=BE+DF,
    ∴EF=BE+FD,
    故答案为:EF=BE+FD;
    (2)(1)中的结论仍然成立,
    理由如下:如图2,延长CB至M,使BM=DF,连接AM,

    ∵∠ABC+∠D=180°,∠ABC+∠1=180°,
    ∴∠1=∠D,
    在△ABM和△ADF中,

    ∴△ABM≌△ADF(SAS),
    ∴AM=AF,∠3=∠2,
    ∵∠EAF=∠BAD,
    ∴∠2+∠4=∠EAF,
    ∴∠EAM=∠3+∠4=∠2+∠4=∠EAF,
    在△MAE和△FAE中,

    ∴△MAE≌△FAE(SAS),
    ∴EF=EM,
    ∵EM=BM+BE=BE+DF,
    ∴EF=BE+FD;
    (3)(1)中的结论不成立,EF=BE﹣FD,
    理由如下:如图3,在EB上截取BH=DF,连接AH,

    同(2)中证法可得,△ABH≌△ADF,
    ∴AH=AF,∠BAH=∠DAF,
    ∴∠HAE=∠FAE,
    在△HAE和△FAE中,

    ∴△HAE≌△FAE(SAS),

    ∵EH=BE﹣BH=BE﹣DF,
    ∴EF=BE﹣FD.
    【点睛】
    本题考查了三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.
    12.已知在四边形ABCD中,∠ABC+∠ADC=180°,∠BAD+∠BCD=180°,AB=BC
    (1)如图1,连接BD,若∠BAD=90°,AD=7,求DC的长度.
    (2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=∠ABP+∠QBC
    (3)若点Q在DC的延长线上,点P在DA的延长线上,如图3所示,仍然满足PQ=AP+CQ,请写出∠PBQ与∠ADC的数量关系,并给出证明过程.

    【答案】(1);(2)见解析;(3),证明见解析
    【解析】
    【分析】
    (1)根据已知条件得出为直角三角形,再根据证出,从而证出即可得出结论;
    (2)如图2,延长DC到 K,使得CK=AP,连接BK,通过证△BPA≌△BCK(SAS)得到:∠1=∠2,BP=BK.然后根据证明得,从而得出,然后得出结论;
    (3)如图3,在CD延长线上找一点K,使得KC=AP,连接BK,构建全等三角形:△BPA≌△BCK(SAS),由该全等三角形的性质和全等三角形的判定定理SSS证得:△PBQ≌△BKQ,则其对应角相等:∠PBQ=∠KBQ,结合四边形的内角和是360°可以推得:∠PBQ=90°+∠ADC.
    【详解】
    (1)证明:如图1,

    ∵,,
    ∴,
    在和中,

    ∴,
    ∴,
    ∴;
    (2)如图2,

    延长至点,使得,连接
    ∵,
    ∴,
    ∵,
    ∴,
    ∵,,
    ∴,
    ∴,,
    ∵,,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴;
    (3);
    如图3,在延长线上找一点,使得,连接,
    ∵,
    ∴,
    ∵,
    ∴,
    在和中,

    ∴,
    ∴,,
    ∴,
    ∵,
    ∴,
    在和中,

    ∴,
    ∴,
    ∴,
    ∴,
    ∴.

    【点睛】
    本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
    13.如图,已知B(-1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD的延长线上,CD交AB于F,且∠BDC=∠BAC.
    (1)求证:∠ABD=∠ACD;
    (2)求证:AD平分∠CDE;
    (3)若在点D运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数.

    【答案】(1)见解析;(2)见解析;(3)不变,60°
    【解析】
    【分析】
    (1)根据∠BDC=∠BAC,∠DFB=∠AFC,再结合∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,即可得出结论;
    (2)过点A作AM⊥CD于点M,作AN⊥BE于点N.运用“AAS”证明△ACM≌△ABN得AM=AN.根据“到角的两边距离相等的点在角的平分线上”得证;
    (3)运用截长法在CD上截取CP=BD,连接AP.证明△ACP≌ABD得△ADP为等边三角形,从而求∠BAC的度数.
    【详解】
    (1)证明:∵∠BDC=∠BAC,∠DFB=∠AFC,
    又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,
    ∴∠ABD=∠ACD;
    (2)过点A作AM⊥CD于点M,作AN⊥BE于点N.


    则∠AMC=∠ANB=90°,
    ∵OB=OC,OA⊥BC,
    ∴AB=AC,
    ∵∠ABD=∠ACD,
    ∴△ACM≌△ABN (AAS),
    ∴AM=AN,
    ∴AD平分∠CDE(到角的两边距离相等的点在角的平分线上);
    (3)∠BAC的度数不变化.
    在CD上截取CP=BD,连接AP.


    ∵CD=AD+BD,
    ∴AD=PD,
    ∵AB=AC,∠ABD=∠ACD,BD=CP,
    ∴△ABD≌△ACP,
    ∴AD=AP,∠BAD=∠CAP,
    ∴AD=AP=PD,
    即△ADP是等边三角形,
    ∴∠DAP=60°,
    ∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.
    【点睛】
    此题考查全等三角形的判定与性质,运用了角平分线的判定定理和“截长补短”的数学思想方法,综合性较强.
    14.阅读材料并完成习题:
    在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.
    解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2, ∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.
    (1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.
    (2)请你用上面学到的方法完成下面的习题.
                      
    如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.
    【答案】(1)2;(2)4
    【解析】
    【分析】
    (1)根据题意可直接求等腰直角三角形EAC的面积即可;
    (2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证,则有FK=FH,因为HM=GH+MN易证,故可求解.
    【详解】
    (1)由题意知,
    故答案为2;
    (2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示:

    FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,
    ∠FNK=∠FGH=90°,,
    FH=FK,
    又FM=FM,HM=KM=MN+GH=MN+NK,

    MK=FN=2cm,

    【点睛】
    本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.
    15.如图1,在中,是直角,,、分别是、的平分线,、相交于点.
         
    (1)求出的度数;
    (2)判断与之间的数量关系并说明理由.(提示:在上截取,连接.)
    (3)如图2,在△中,如果不是直角,而(1)中的其它条件不变,试判断线段、与之间的数量关系并说明理由.
    【答案】(1)∠AFC=120°;(2)FE与FD之间的数量关系为:DF=EF.理由见解析;(3)AC=AE+CD.理由见解析.
    【解析】
    【分析】
    (1)根据三角形的内角和性质只要求出∠FAC,∠ACF即可解决问题;
    (2)根据在图2的 AC上截取CG=CD,证得△CFG≌△CFD (SAS),得出DF= GF;再根据ASA证明△AFG≌△AFE,得EF=FG,故得出EF=FD;
    (3)根据(2) 的证明方法,在图3的AC上截取AG=AE,证得△EAF≌△GAF (SAS)得出∠EFA=∠GFA;再根据ASA证明△FDC≌△FGC,得CD=CG即可解决问题.
    【详解】
    (1)解:∵∠ACB=90°,∠B=60°,
    ∴∠BAC=90°﹣60°=30°,
    ∵AD、CE分别是∠BAC、∠BCA的平分线,
    ∴∠FAC=15°,∠FCA=45°,
    ∴∠AFC=180°﹣(∠FAC+∠ACF)=120°
    (2)解:FE与FD之间的数量关系为:DF=EF.
    理由:如图2,在AC上截取CG=CD,

    ∵CE是∠BCA的平分线,
    ∴∠DCF=∠GCF,
    在△CFG和△CFD中,

    ∴△CFG≌△CFD(SAS),
    ∴DF=GF.∠CFD=∠CFG
    由(1)∠AFC=120°得,
    ∴∠CFD=∠CFG=∠AFE=60°,
    ∴∠AFG=60°,
    又∵∠AFE=∠CFD=60°,
    ∴∠AFE=∠AFG,
    在△AFG和△AFE中,

    ∴△AFG≌△AFE(ASA),
    ∴EF=GF,
    ∴DF=EF;
    (3)结论:AC=AE+CD.
    理由:如图3,在AC上截取AG=AE,

    同(2)可得,△EAF≌△GAF(SAS),
    ∴∠EFA=∠GFA,AG=AE
    ∵∠BAC+∠BCA=180°-∠B=180°-60°=120°
    ∴∠AFC=180°﹣(∠FAC+∠FCA)=180°-(∠BAC+∠BCA)=180°-×120°=120°,
    ∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,
    ∴∠CFG=∠CFD=60°,
    同(2)可得,△FDC≌△FGC(ASA),
    ∴CD=CG,
    ∴AC=AG+CG=AE+CD.
    【点睛】
    本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.
    16.(1)如图(1),在四边形中,,,E,F分别是上的动点,且,求证:.
    (2)如图(2),在(1)的条件下,当点E,F分别运动到的延长线上时,之间的数量关系是______.

    【答案】(1)详见解析;(2)
    【解析】
    【分析】
    (1)延长到点G,使,连接,先证明,得到,然后证明,得到,根据,可得;
    (2)在上截取,连接,先证明△ABG≌△ADF(SAS),得到AG=AF,∠BAG=∠DAF,再证明△EAG≌△EAF(SAS),得到EG=EF,根据BG=DF,即可得EF=BE-BG=BE-DF.
    【详解】
    (1)如图,延长到点G,使,连接.



    又,,
    ∴,

    ,.

    ∴,



    (2).
    如图,在上截取,连接,



    在△ABG和△ADF中,
    ∴△ABG≌△ADF(SAS),
    ∴AG=AF,∠BAG=∠DAF,
    ∠BAD=2∠EAF,
    ∴∠BAG+∠GAE+∠EAD=∠EAD+∠DAF+∠EAD+∠DAF,
    ∴∠GAE=∠EAF,
    在△EAG和△EAF中,
    ∴△EAG≌△EAF(SAS),
    ∴EG=EF,
    ∵BG=DF,
    ∴EF=BE-BG=BE-DF.
    【点睛】
    本题考查了全等三角形的判定和性质,掌握判定定理是解题关键.
    17.(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°,请探究图中线段BE,EF,FD之间的数量关系是什么?

    小明探究此问题的方法是:延长FD到点G,使DG=BE,连结AG.先证明△ABE≌△ADG,得AE=AG;再由条件可得∠EAF=∠GAF,证明△AEF≌△AGF,进而可得线段BE,EF,FD之间的数量关系是   .
    (2)拓展应用:
    如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD.问(1)中的线段BE,EF,FD之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.
    【答案】(1)EF=BE+DF;(2)结论EF=BE+DF仍然成立;证明见解析.
    【解析】
    【分析】
    (1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;
    (2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题.
    【详解】
    (1)EF=BE+DF,
    理由如下:
    在△ABE和△ADG中,

    ∴△ABE≌△ADG(SAS),
    ∴AE=AG,∠BAE=∠DAG,
    ∵∠EAF=∠BAD,
    ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
    ∴∠EAF=∠GAF,
    在△AEF和△GAF中,

    ∴△AEF≌△AGF(SAS),
    ∴EF=FG,
    ∵FG=DG+DF=BE+DF,
    ∴EF=BE+DF;
    故答案为:EF=BE+DF.
    (2)结论EF=BE+DF仍然成立;
    理由:延长FD到点G.使DG=BE.连结AG,如图2,

    ∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,
    ∴∠B=∠ADG,
    在△ABE和△ADG中,

    ∴△ABE≌△ADG(SAS),
    ∴AE=AG,∠BAE=∠DAG,
    ∵∠EAF=∠BAD,
    ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
    ∴∠EAF=∠GAF,
    在△AEF和△GAF中,

    ∴△AEF≌△AGF(SAS),
    ∴EF=FG,
    ∵FG=DG+DF=BE+DF,
    ∴EF=BE+DF.
    【点睛】
    本题是四边形综合题,考查了全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.



    相关试卷

    初中数学12.2 三角形全等的判定课后复习题: 这是一份初中数学12.2 三角形全等的判定课后复习题,文件包含八年级数学上册专题15半角模型证全等原卷版docx、八年级数学上册专题15半角模型证全等解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    初中数学人教版八年级上册12.1 全等三角形达标测试: 这是一份初中数学人教版八年级上册12.1 全等三角形达标测试,文件包含八年级数学上册专题14边边角证全等原卷版docx、八年级数学上册专题14边边角证全等解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。

    数学第十二章 全等三角形12.2 三角形全等的判定课后练习题: 这是一份数学第十二章 全等三角形12.2 三角形全等的判定课后练习题,文件包含八年级数学上册专题12截长补短证全等原卷版docx、八年级数学上册专题12截长补短证全等解析版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题07 截长补短证全等-八年级数学上册常考点微专题提分精练(浙教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map