终身会员
搜索
    上传资料 赚现金

    中考数学专题复习 专题53 中考几何动态试题解法

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      中考数学专题复习 专题53 中考几何动态试题解法(教师版含解析).docx
    • 学生
      中考数学专题复习 专题53 中考几何动态试题解法(学生版).docx
    中考数学专题复习 专题53 中考几何动态试题解法(教师版含解析)第1页
    中考数学专题复习 专题53 中考几何动态试题解法(教师版含解析)第2页
    中考数学专题复习 专题53 中考几何动态试题解法(教师版含解析)第3页
    中考数学专题复习 专题53 中考几何动态试题解法(学生版)第1页
    中考数学专题复习 专题53 中考几何动态试题解法(学生版)第2页
    中考数学专题复习 专题53 中考几何动态试题解法(学生版)第3页
    还剩39页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学专题复习 专题53 中考几何动态试题解法

    展开

    这是一份中考数学专题复习 专题53 中考几何动态试题解法,文件包含中考数学专题复习专题53中考几何动态试题解法教师版含解析docx、中考数学专题复习专题53中考几何动态试题解法学生版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
    中考数学总复习六大策略1学会运用函数与方程思想。从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法2学会运用数形结合思想。数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系寻求代数问题的解决方法以形助数),或利用数量关系来研究几何图形的性质解决几何问题以数助形的一种数学思想3要学会抢得分点。一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。4学会运用等价转换思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。5学会运用分类讨论的思想。如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。6转化思想:体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。 专题53 中考几何动态试题解法一、动态问题概述1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。怎样3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。二、动点与函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。怎样解决好4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。三、图形运动与函数图象问题常见的三种类型1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。怎样解决好中考数3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。四、动点问题常见的四种类型解题思路1.教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。2.四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系。3.这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?3.圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系。4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题。五、解决动态问题一般步骤(1)用数量来刻画运动过程。因为在不同的运动阶段,同一个量的数学表达方式会发生变化,所以需要分类讨论。有时符合试题要求的情况不止一种,这时也需要分类讨论。(2)画出符合题意的示意图。(3)根据试题的已知条件或者要求列出算式、方程或者数量间的关系式。【例题1】(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙Ox轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线yx﹣3与x轴、y轴分别交于点DE,则△CDE面积的最小值为    【对点练习】(2020年浙江台州模拟)如图所示,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是(  )A.6       B.2+1      C.9       D.【例题2】(2020•重庆)如图,在Rt△ABC中,∠BAC=90°,ABAC,点DBC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CEDE.点FDE的中点,连接CF(1)求证:CFAD(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CFBA,相交于点G,猜想AGBC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小.当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.【对点练习】如图,在菱形ABCD中,对角线ACBD相交于点OAB=4,∠DAB=120°,动点P从点A出发,以每秒2个单位的速度沿AC向终点C运动.过PPEABAB于点E,作PFADAD于点F,设四边形AEPF与△ABD的重叠部分的面积为S,点P的运动时间为t(1)用含t的代数式表示线段BE的长;(2)当点P与点O重合时,求t的值;(3)求St之间的函数关系式;(4)在点P出发的同时,有一点Q从点C出发,以每秒6个单位的速度沿折线CDAB运动,设点Q关于AC的对称点是Q',直接写出PQ'与菱形ABCD的边垂直时t的值.【例题3】(2020•苏州)如图,已知∠MON=90°,OT是∠MON的平分线,A是射线OM上一点,OA=8cm.动点P从点A出发,以1cm/s的速度沿AO水平向左作匀速运动,与此同时,动点Q从点O出发,也以1cm/s的速度沿ON竖直向上作匀速运动.连接PQ,交OT于点B.经过OPQ三点作圆,交OT于点C,连接PCQC.设运动时间为t(s),其中0<t<8.(1)求OP+OQ的值;(2)是否存在实数t,使得线段OB的长度最大?若存在,求出t的值;若不存在,说明理由.(3)求四边形OPCQ的面积.【对点练习】(2019•山东潍坊)如图,直线yx+1与抛物线yx2﹣4x+5交于AB两点,点Py轴上的一个动点,当△PAB的周长最小时,SPAB     一、选择题1.(2019海南)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点PPQABBC于点QD为线段PQ的中点,当BD平分∠ABC时,AP的长度为(  )A. B. C. D.2.(2019•四川省达州市)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,ABEF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点FB重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是(  )A. B. C. D.3.(2019•山东泰安)如图,矩形ABCD中,AB=4,AD=2,EAB的中点,FEC上一动点,PDF中点,连接PB,则PB的最小值是(  )A.2 B.4 C. D.4.(2019•山东潍坊)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么yx之间的函数关系的图象大致是(  )A.B. C.D.5.(2019•湖北武汉)如图,AB是⊙O的直径,MN(异于A.B)上两点,C上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C.E两点的运动路径长的比是(  )A. B. C. D.6.(2019•甘肃武威)如图①,在矩形ABCD中,ABAD,对角线ACBD相交于点O,动点P由点A出发,沿ABBCCD向点D运动.设点P的运动路程为x,△AOP的面积为yyx的函数关系图象如图②所示,则AD边的长为(  )A.3 B.4 C.5 D.6二、填空题7.(2019桂林)如图,在矩形ABCD中,ABAD=3,点PAD边上的一个动点,连接BP,作点A关于直线BP的对称点A1,连接A1C,设A1C的中点为Q,当点P从点A出发,沿边AD运动到点D时停止运动,点Q的运动路径长为     8.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是       9.(2020湖北随州模拟)如图,∠AOB的边OBx轴正半轴重合,点POA上的一动点,点N(3,0)是OB上的一定点,点MON的中点,∠AOB=30°,要使PMPN最小,则点P的坐标为________.10.(2019•四川广安)如图,在四边形中,,直线.当直线沿射线方向,从点开始向右平移时,直线与四边形的边分别相交于点.设直线向右平移的距离为,线段的长为,且的函数关系如图所示,则四边形的周长是        . 三、解答题11.(2020•铜仁市)如图,已知抛物线yax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.(1)求抛物线的解析式;(2)点P(mn)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;(3)点M在抛物线上运动,点Ny轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.12.(2020•嘉兴)在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B(1)求该抛物线的函数表达式.(2)当球运动到点C时被东东抢到,CDx轴于点DCD=2.6m①求OD的长.②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).13.(2020•黔东南州)已知抛物线yax2+bx+c(a≠0)与x轴交于AB两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.(3)点Px轴上的动点,点Q是抛物线上的动点,是否存在点PQ,使得以点PQBD为顶点,BD为一边的四边形是平行四边形?若存在,请求出点PQ坐标;若不存在,请说明理由.14.(2020•遂宁)如图,抛物线yax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BEAD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使ADPQ为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.15.(2019•山东青岛)已知:如图,在四边形ABCD中,ABCD,∠ACB=90°,AB=10cmBC=8cmOD垂直平分A  C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点PPEAB,交BC于点E,过点QQFAC,分别交ADOD于点FG.连接OPEG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求St的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OEOQ,在运动过程中,是否存在某一时刻t,使OEOQ?若存在,求出t的值;若不存在,请说明理由. 

    相关试卷

    (通用版)中考数学总复习考点53 中考几何动态试题解法(含解析):

    这是一份(通用版)中考数学总复习考点53 中考几何动态试题解法(含解析),共43页。试卷主要包含了动态问题概述数,动点问题常见的四种类型解题思路,解决动态问题一般步骤等内容,欢迎下载使用。

    2024年中考数学专题复习——专题四 动态几何:

    这是一份2024年中考数学专题复习——专题四 动态几何,共19页。

    中考数学二轮复习考点突破专题53 中考几何动态试题解法(教师版):

    这是一份中考数学二轮复习考点突破专题53 中考几何动态试题解法(教师版),共43页。试卷主要包含了动态问题概述数,动点问题常见的四种类型解题思路,解决动态问题一般步骤等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map