专题30二次函数与动点压轴问题-中考数学压轴大题之经典模型培优案(全国通用)
展开
这是一份专题30二次函数与动点压轴问题-中考数学压轴大题之经典模型培优案(全国通用),文件包含专题30二次函数与动点压轴问题-中考数学压轴大题之经典模型培优案解析版docx、专题30二次函数与动点压轴问题-中考数学压轴大题之经典模型培优案原卷版docx等2份试卷配套教学资源,其中试卷共96页, 欢迎下载使用。
中考数学压轴大题之经典模型培优案专题30二次函数与动点压轴问题 【例1】.(2022·辽宁阜新·统考中考真题)如图,已知二次函数的图像交轴于点,,交轴于点.(1)求这个二次函数的表达式;(2)如图,点从点出发,以每秒个单位长度的速度沿线段向点运动,点从点出发,以每秒个单位长度的速度沿线段向点运动,点,同时出发.设运动时间为秒().当为何值时,的面积最大?最大面积是多少?(3)已知是抛物线上一点,在直线上是否存在点,使以,,,为顶点的四边形是平行四边形?若存在,直接写出点坐标;若不存在,请说明理由.【例2】(2022·四川达州·统考中考真题)如图1,在平面直角坐标系中,已知二次函数的图象经过点,,与y轴交于点C.(1)求该二次函数的表达式;(2)连接,在该二次函数图象上是否存在点P,使?若存在,请求出点P的坐标:若不存在,请说明理由;(3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线,分别交直线l于点M,N,在点Q的运动过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.【例3】(2021·江苏淮安·统考中考真题)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣3,0)和点B(5,0),顶点为点D,动点M、Q在x轴上(点M在点Q的左侧),在x轴下方作矩形MNPQ,其中MQ=3,MN=2.矩形MNPQ沿x轴以每秒1个单位长度的速度向右匀速运动,运动开始时,点M的坐标为(﹣6,0),当点M与点B重合时停止运动,设运动的时间为t秒(t>0).(1)b= ,c= .(2)连接BD,求直线BD的函数表达式.(3)在矩形MNPQ运动的过程中,MN所在直线与该二次函数的图象交于点G,PQ所在直线与直线BD交于点H,是否存在某一时刻,使得以G、M、H、Q为顶点的四边形是面积小于10的平行四边形?若存在,求出t的值;若不存在,请说明理由.(4)连接PD,过点P作PD的垂线交y轴于点R,直接写出在矩形MNPQ整个运动过程中点R运动的路径长.【例4】(2021·四川雅安·统考中考真题)已知二次函数.(1)当该二次函数的图象经过点时,求该二次函数的表达式;(2)在(1) 的条件下,二次函数图象与x轴的另一个交点为点B,与y轴的交点为点C,点P从点A出发在线段AB上以每秒2个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动,直到其中一点到达终点时,两点停止运动,求△BPQ面积的最大值;(3)若对满足的任意实数x,都使得成立,求实数b的取值范围.【例5】(2021·湖南张家界·统考中考真题)如图,已知二次函数的图象经过点且与轴交于原点及点.(1)求二次函数的表达式;(2)求顶点的坐标及直线的表达式;(3)判断的形状,试说明理由;(4)若点为上的动点,且的半径为,一动点从点出发,以每秒2个单位长度的速度沿线段匀速运动到点,再以每秒1个单位长度的速度沿线段匀速运动到点后停止运动,求点的运动时间的最小值. 1.(2022·内蒙古包头·模拟预测)如图,已知正方形的边,分别在x轴和y轴的正半轴上,点B的坐标为.二次函数的图象经过点A,B,且x轴的交点为E,F.点P在线段上运动,过点O作于点H.直线交直线于点D,连接.(1)求,的值及点E和点F的坐标;(2)在点P运动的过程中,当与以A,B,D为顶点的三角形相似时,求点P的坐标;(3)当点P运动到的中点时,能否将绕平面内某点旋转后使得的两个顶点落在x轴上方的抛物线上?若能,请直接写出旋转中心M的坐标;若不能,请说明理由.2.(2023·广西玉林·一模)已知二次函数的图象经过点.(1)求该二次函数的表达式;(2)二次函数图象与轴的另一个交点为,与轴的交点为,点从点出发在线段上以每秒个单位长度的速度向点运动,同时点从点出发,在线段上以每秒个单位长度的速度向点运动,直到其中一点到达终点时,两点停止运动,求面积的最大值;(3)在点、运动的过程中,是否存在使与相似的时刻,如果存在,求出运动时间,如果不存在,请说明理由.3.(2022·湖南长沙·长沙市南雅中学校联考一模)已知二次函数()的图象经过A(1,0)、B(−3,0)两点,顶点为点C.(1)求二次函数的解析式;(2)如二次函数的图象与y轴交于点G,抛物线上是否存在点Q,使得∠QAB=∠ABG,若存在求出Q点坐标,若不存在请说明理由;(3)经过点B并且与直线AC平行的直线BD与二次函数图象的另一交点为D,DE⊥AC,垂足为E,DFy轴交直线AC于点F,点M是线段BC之间一动点,FN⊥FM交直线BD于点N,延长MF与线段DE的延长线交于点H,点P为△NFH的外心,求点M从点B运动到点C的过程中,P点经过的路线长.4.(2021·四川宜宾·四川省宜宾市第二中学校校考一模)次函数的图象交x轴于点A(-1,0),B(4,0),两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数的表达式;(2)连接BD,当时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点P的坐标.5.(2022·辽宁葫芦岛·统考二模)如图,在平面直角坐标系中,二次函数的图象与坐标轴交于A,B,C三点,其中点A的坐标为(-3,0),点B的坐标为(0,-4),连接AB,BC. 动点P从点A出发,在线段AB上以每秒1个单位长度的速度向点B作匀速运动;同时,动点Q从点A出发,在线段AC上以每秒个单位长度的速度向点C作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒. 连接PQ,PC. (1)求抛物线的表达式;(2)在点P,Q运动过程中,当的面积为时,求点Q坐标;(3)在(2)条件下,时,在直线PQ上是否存在点M,使?若存在,请直接求出点M的坐标;若不存在,请说明理由. 6.(2022·四川广安·统考二模)如图:已知关于x的二次函数y=x2+bx+c的图像与x轴交于点A(1,0)和点B,与y轴交于点C(0,3).(1)求二次函数的解析式;(2)在抛物线的对称轴上是否存在一点P,使△PBC为等腰三角形,若存在,请求出点P的坐标;(3)有一个点M在线段CB上运动,作MN⊥x轴交抛物线于点N,问当M、N点位于何处时,△BCN的面积最大,求最大面积.7.(2022·湖北省直辖县级单位·校考一模)综合与探究如图,二次函数的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线轴于点D,作直线BC交PD于点E(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线 ,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得,若存在,请直接写出m的值;若不存在,请说明理由.8.(2020·江苏盐城·统考一模)如图,二次函数的图像与x轴交于点A(2,0)和点B(4,0),与y轴交于点E,以AB为边在x轴下方作正方形ABCD,点M是x轴上一动点,连接CM,过点M作MN⊥MC,与AD边交于点N,与y轴交于点F.(1)求该抛物线的表达式;(2)在第一象限的抛物线上任取一点P,连接EP、PB,请问:△EPB的面积是否存在最大值?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点M在线段OB(点M不与O、B重合)上运动至何处时,线段OF的长有最大值?并求出这个最大值.9.(2022·山西大同·校联考三模)如图,二次函数的图象与x轴交于点A和B,点A在点B的左侧,与y轴交于点C.(1)求直线的函数解析式;(2)如图2,点D在直线下方的抛物线上运动,过点D作轴交于点M,作于点N,当的周长最大时,求点D的坐标及周长的最大值;(3)以为边作交y轴于点E,借助图1探究,并直接写出点E的坐标.10.(2022·山西·校联考模拟预测)综合与探究如图,二次函数y=ax2+bx+4的图象与x轴分别交于点A(−2,0),B(4,0),点E是x轴正半轴上的一个动点,过点E作直线PE⊥x轴,交抛物线于点P,交直线BC于点F.(1)求二次函数的表达式.(2)当点E在线段OB上运动时(不与点O,B重合),恰有线段,求此时点P的坐标.(3)试探究:若点Q是y轴上一点,在点E运动过程中,是否存在点Q,使得以点C,F,P,Q为顶点的四边形为菱形,若存在,直接写出点Q的坐标;若不存在,请说明理由.11.(2022·福建三明·统考模拟预测)已知直线交x轴于点A,交y轴于点B,二次函数 的图像经过A、B两点.(1)求二次函数的表达式.(2)设动点M的横坐标为m,当动点M在AB下方的抛物线上运动时,求△MAB的面积S关于m的函数表达式.(3)有一条动直线,直线在AO之间移动(包括A,O两端点),直线交抛物线于点Q,当△QAB的面积是△QAO面积的2倍时,求a的值.12.(2022·江苏泰州·统考二模)我国于2022年在北京举办冬奥会,滑雪是其中最具观赏性的项目之一.如图所示,一个滑道由滑坡(AB段)和缓冲带(BC段)组成,其中滑坡AB长为270米.某滑雪运动员在滑坡上滑行的距离(单位:m)与滑行时间(单位:s)满足二次函数关系,并测得相关数据:滑行时间01234滑行距离04.51428.548 该运动员在缓冲带上滑行的距离(单位:m)与在缓冲带上滑行时间(单位:s)满足:.(1)求与的函数关系式;(2)求该运动员从A出发到在缓冲带BC上停止所用的总时间.13.(2022·江苏连云港·统考二模)如图,平面直角坐标系中,二次函数图像交x轴于点A、B,交y轴于点C,图像对称轴交x轴于点D.点P是线段OD上一动点,从O向D运动,H是射线BC上一点.(1)则点A的坐标为 ,点B的坐标为 ,线段BC的长为 ;(2)如图1,在P点运动过程中,若△OPC中有一个内角等于∠HCA,求OP的长;(3)如图2,点在二次函数图像上,在P点开始运动的同时,点Q在抛物线对称轴上从D点向上运动,Q点运动速度是P点运动速度的2倍,连接QM,则的最小值为 .14.(2020·新疆乌鲁木齐·乌鲁木齐市第九中学校考一模)已知二次函数的图象与轴交于和,与轴交于点.(1)求该二次函数的表达式.(2)如图,连接,动点以每秒个单位长度的速度由向运动,同时动点以每秒个单位长度的速度由向运动,连接,当点到达点的位置时,、同时停止运动,设运动时间为秒.当为直角三角形时,求的值.(3)如图,在抛物线对称轴上是否存在一点,使得点到轴的距离与到直线的距离相等,若存在,求出点的坐标;若不存在,请说明理由.15.(2022·山西吕梁·统考二模)综合与探究如图,二次函数与轴交于,两点,与轴交于点.点是射线上的动点,过点作,并且交轴于点. (1)请直接写出,,三点的坐标及直线的函数表达式;(2)当平分时,求出点的坐标;(3)当点在线段上运动时,直线与抛物线在第一象限内交于点,则线段是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.16.(2022·山西吕梁·统考二模)综合与探究如图,二次函数与x轴交于A,B两点,与y轴交于点C.点D是射线BC上的动点,过点D作,并且交x轴于点E.(1)请直接写出A,B,C三点的坐标及直线BC的函数表达式;(2)当AD平分时,求出点D的坐标;(3)当点D在线段BC上运动时,直线DE与抛物线在第一象限内交于点P,则线段PD是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.17.(2022·贵州铜仁·统考二模)如图,已知二次函数的图象经过点且与x轴交于原点及点,顶点为A.(1)求二次函数的表达式;(2)判断的形状,试说明理由;(3)若点P为上的动点,且的半径为,一动点E从点A出发,以每秒2个单位长度的速度沿线段匀速运动到点P,再以每秒1个单位长度的速度沿线段匀速运动到点B后停止运动,求点E的运动时间t的最小值.18.(2022·江苏无锡·统考二模)二次函数y=ax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0).(1)求此二次函数的表达式;(2)①如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN相似,求点N的坐标;②如图2,点M在抛物线上,且点M的横坐标是1,将射线MA绕点M逆时针旋转45°,交抛物线于点P,求点P的坐标;(3)已知Q在y轴上,T为二次函数对称轴上一点,且△QOT为等腰三角形,若符合条件的Q恰好有2个,直接写出T的坐标.19.(2022·江苏徐州·统考二模)如图,已知二次函数的图像与轴交于,两点,与轴交于点.(1)求此二次函数的表达式;(2)点在以为直径的圆上(点与点,点,点均不重合),试探究,、的数量关系,并说明理由.(3)点为该图像在第一象限内的一动点,过点作直线的平行线,交轴于点.若点从点出发,沿着抛物线运动到点,则点经过的路程为______.20.(2022·江苏苏州·统考一模)如图,二次函数y=﹣x2+bx+4的图象与x轴交于点A、B与y轴交于点C,点A的坐标为(﹣8,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b= ,点B的坐标是 ;(2)连接AC、BC,证明:∠CBA=2∠CAB;(3)点D为AC的中点,点E是抛物线在第二象限图象上一动点,作DE,把点A沿直线DE翻折,点A的对称点为点G,点E运动时,当点G恰好落在直线BC上时,求E点的坐标.
相关试卷
这是一份专题26二次函数与线段周长压轴问题-中考数学压轴大题之经典模型培优案(全国通用),文件包含专题26二次函数与线段周长压轴问题-中考数学压轴大题之经典模型培优案解析版docx、专题26二次函数与线段周长压轴问题-中考数学压轴大题之经典模型培优案原卷版docx等2份试卷配套教学资源,其中试卷共91页, 欢迎下载使用。
这是一份专题31二次函数与圆压轴问题-中考数学压轴大题之经典模型培优案(全国通用),文件包含专题31二次函数与圆压轴问题-中考数学压轴大题之经典模型培优案解析版docx、专题31二次函数与圆压轴问题-中考数学压轴大题之经典模型培优案原卷版docx等2份试卷配套教学资源,其中试卷共94页, 欢迎下载使用。
这是一份专题29二次函数与相似压轴问题-中考数学压轴大题之经典模型培优案(全国通用),文件包含专题29二次函数与相似压轴问题-中考数学压轴大题之经典模型培优案解析版docx、专题29二次函数与相似压轴问题-中考数学压轴大题之经典模型培优案原卷版docx等2份试卷配套教学资源,其中试卷共104页, 欢迎下载使用。