终身会员
搜索
    上传资料 赚现金

    专题11-1 直方图、回归方程(线性与非线性)-高考数学一轮复习热点题型归纳与变式演练(全国通用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题11-1 直方图、回归方程(线性与非线性)-高考数学一轮复习热点题型归纳与变式演练(全国通用)(原卷版).docx
    • 解析
      专题11-1 直方图、回归方程(线性与非线性)-高考数学一轮复习热点题型归纳与变式演练(全国通用)(解析版).docx
    专题11-1 直方图、回归方程(线性与非线性)-高考数学一轮复习热点题型归纳与变式演练(全国通用)(原卷版)第1页
    专题11-1 直方图、回归方程(线性与非线性)-高考数学一轮复习热点题型归纳与变式演练(全国通用)(原卷版)第2页
    专题11-1 直方图、回归方程(线性与非线性)-高考数学一轮复习热点题型归纳与变式演练(全国通用)(原卷版)第3页
    专题11-1 直方图、回归方程(线性与非线性)-高考数学一轮复习热点题型归纳与变式演练(全国通用)(解析版)第1页
    专题11-1 直方图、回归方程(线性与非线性)-高考数学一轮复习热点题型归纳与变式演练(全国通用)(解析版)第2页
    专题11-1 直方图、回归方程(线性与非线性)-高考数学一轮复习热点题型归纳与变式演练(全国通用)(解析版)第3页
    还剩19页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题11-1 直方图、回归方程(线性与非线性)-高考数学一轮复习热点题型归纳与变式演练(全国通用)

    展开

    这是一份专题11-1 直方图、回归方程(线性与非线性)-高考数学一轮复习热点题型归纳与变式演练(全国通用),文件包含专题11-1直方图回归方程线性与非线性-高考数学一轮复习热点题型归纳与变式演练全国通用解析版docx、专题11-1直方图回归方程线性与非线性-高考数学一轮复习热点题型归纳与变式演练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。


    专题11-1直方图、回归方程(线性与非线性)

    目录
    【题型一】直方图 1
    【题型二】柱状图 2
    【题型三】相关系数判断 3
    【题型四】线性回归 4
    【题型五】非线性回归1:型 6
    【题型六】非线性回归2:型 7
    【题型七】非线性回归3:型 8
    【题型八】非线性回归4:型 10
    【题型九】非线性回归5:型 11
    【题型十】残差拟合判断 13
    【题型十】数据丢失或剔除型 14
    真题再现 16
    模拟检测 18



    【题型一】直方图
    【典例分析】
    近年来,“直播带货”受到越来越多人的喜爱,目前已经成为推动消费的一种流行的营销形式.某直播平台800个直播商家,对其进行调查统计,发现所售商品多为小吃、衣帽、生鲜、玩具、饰品类等,各类直播商家所占比例如图1所示.

    (1)该直播平台为了更好地服务买卖双方,打算随机抽取40个直播商家进行问询交流.如果按照分层抽样的方式抽取,则应抽取小吃类、玩具类商家各多少家?
    (2)在问询了解直播商家的利润状况时,工作人员对抽取的40个商家的平均日利润进行了统计(单位:元),所得频率分布直方图如图2所示.请根据频率分布直方图计算下面的问题;
    (ⅰ)估计该直播平台商家平均日利润的中位数与平均数(结果保留一位小数,求平均数时同一组中的数据用该组区间的中点値作代表);
    (ⅱ)若将平均日利润超过420元的商家成为“优秀商家”,估计该直播平台“优秀商家”的个数.

    【变式演练】
    随着人民生活水平的不断提高,“衣食住行”愈发被人们所重视,其中对饮食的要求也愈来愈高.某地区为了解当地餐饮情况,随机抽取了100人对该地区的餐饮情况进行了问卷调查.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图),解决下列问题.
    组别
    分组
    频数
    频率
    第1组

    14
    0.14
    第2组

    m

    第3组

    36
    0.36
    第4组


    0.16
    第5组

    4
    n

    合计




    (1)求m,n,x,y的值;
    (2)求中位数;
    (3)用分层抽样的方式从第四、第五组抽取5人,再从这5人中随机抽取2人参加某项美食体验活动,求抽到的2人均来自第四组的概率.
    贵州省2023届高三3 3 3高考备考诊断性联考(一)数学(文)试题

    【题型二】柱状图
    【典例分析】
    .2014年12月28日开始,北京市公共汽车和地铁按照里程分段计价. 具体如表所示.(不考虑公交卡折扣情况).已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.
    乘公共汽车方案
    10公里(含)内2元;
    10公里以上部分,每增加1元可乘坐5公里(含).

    乘坐地铁方案(不含机场线)
    6公里(含)内3元;
    6公里至12公里(含)4元;
    12公里至22公里(含)5元;
    22公里至32公里(含)6元;
    32公里以上部分,每增加1元可乘坐20公里(含).


    (1)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价小于5元的概率;
    (2)已知选出的120人中有6名学生,且这6人乘坐地铁的票价情形恰好与按票价从这120人中分层抽样所选的结果相同,现从这6人中随机选出2人,求这2人的票价和恰好为8元的概率;
    (3)小李乘坐地铁从A地到陶然亭的票价是5元,返程时,小李乘坐某路公共汽车所花交通费也是5元,假设小李往返过程中乘坐地铁和公共汽车的路程均为S公里,试写出S的取值范围.(只需写出结论)

    【变式演练】
    某市共有所高中,各校高一学生占全市高一学生总数的比例如下面柱状图教研部门采用分层抽样的方法从一中、四中、十七中这三所学校抽取人调研,又从这人中随机抽取名同学调查选课情况,其中选择物理学科的是、,地理学科是、、,化学学科是.

    (1)应从三所学校分别抽取多少人?
    (2)从这名同学中选出人进行测试,要求所选三人不能选择同一个学科,用所给字母列出所有可能的结果;在此条件下,设为事件“选出人中没有选择化学学科的同学”,求事件发生的概率.


    【题型三】相关系数判断
    【典例分析】
    某沙漠地区经过治理,生态环境得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的个地块,从这些地块中用简单随机抽样的方法抽取个作为样区,调查得到样本数据,其中和分别表示第个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得:,,,,.
    (1)求该地区这种野生动物数量的估计值;
    (2)求样本的相关系数(精确到);
    (3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.


    【变式演练】
    新冠疫情期间,口罩的消耗量日益增加,某药店出于口罩进货量的考虑,连续9天统计了第天的口罩销售量(百件),得到的数据如下:,,,,.
    (1)若用线性回归模型拟合y与x之间的关系,求该回归直线的方程;
    (2)统计学家甲认为用(1)中的线性回归模型(下面简称模型1)进行拟合,可能不够精确,于是尝试使用非线性模型(下面简称模型2)得到与之间的关系,且模型2的决定系数,在线性回归模型中决定系数可由相关系数的平方计算,试通过计算说明模型1,2中,哪一个模型的拟合效果更好.
    附:参考数据:
    参考公式:相关系数;对于一组具有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计分别为,


    【题型四】线性回归
    【典例分析】
    已知某绿豆新品种发芽的适宜温度在6℃~22℃之间,一农学实验室研究人员为研究温度(℃)与绿豆新品种发芽数(颗)之间的关系,每组选取了成熟种子50颗,分别在对应的8℃~14℃的温度环境下进行实验,得到如下散点图:

    (1)由折线统计图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明;
    (2)建立关于的回归方程,并预测在19℃的温度下,种子发芽的颗数.
    参考数据:,,,.
    参考公式:相关系数,回归直线方程中斜率和截距的最小二乘估计公式分别为
    ,.

    【变式演练】
    为了巩固脱贫成果,某农科所实地考察,研究发现某脱贫村适合种植两种经济作物,可以通过种植这两种经济作物巩固脱贫成果.通过大量考察研究得到如下统计数据:经济作物的亩产量约为300公斤,其收购价格处于上涨趋势,最近五年的价格如下表:
    年份编号
    1
    2
    3
    4
    5
    年份
    2017
    2018
    2019
    2020
    2021
    单价元/公斤
    18
    20
    23
    25
    29

    经济作物的收购价格始终为25元/公斤,其亩产量的频率分布直方图如图所示:

    (1)若经济作物的单价(单位:元/公斤)与年份编号之间具有线性相关关系,请求出关于的线性回归方程;
    (2)根据(1)中所求的线性回归方程,估计2022年经济作物的单价;
    (3)用频率分布直方图估计经济作物的平均亩产量(每组数据以区间的中点值为代表),若不考虑其他因素,试判断2022年该村应种植经济作物还是经济作物?并说明理由.
    参考公式:.参考数据:.


    【题型五】非线性回归1:型
    【典例分析】
    某企业为改进生产,现 某产品及成本相关数据进行统计.现收集了该产品的成本费y(单位:万元/吨)及同批次产品生产数量x(单位:吨)的20组数据.现分别用两种模型①,②进行拟合,据收集到的数据,计算得到如下值:







    14.5

    0.08
    665
    0.04
    -450
    4

    表中,.
    若用刻画回归效果,得到模型①、②的值分别为,.
    (1)利用和比较模型①、②的拟合效果,应选择哪个模型?并说明理由;
    (2)根据(1)中所选择的模型,求y关于x的回归方程;并求同批次产品生产数量为25(吨)时y的预报值.
    附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘法估计分别为,.



    【提分秘籍】
    基本规律
    形如型,可以通过设t=,转化为y=kt+b线性求解


    【变式演练】
    网民的智慧与活力催生新业态,网络购物,直播带货,APP买菜等进入我们的生活,改变了我们的生活方式,随之电信网络诈骗犯罪形势也非常严峻.自“国家反诈中心APP”推出后,某地区采取多措并举的推广方式,努力为人民群众构筑一道防诈反诈的“防火墙”.经统计,该地区网络诈骗月报案数与推广时间有关,并记录了经推广x个月后月报案件数y的数据.
    x(个)
    1
    2
    3
    4
    5
    6
    7
    y(件)
    891
    888
    351
    220
    200
    138
    112

    (1)根据以上数据,使用作为回归方程模型,求出y关于x的回归方程;
    (2)分析该地区一直推广下去,两年后能否将网络诈骗月报案数降至75件以下.参考数据(其中,,,,.
    参考公式:对于一组数据,,,…,,,其回归直线的斜率和截距的最小二乘估计公式分别为:,.


    【题型六】非线性回归2:型
    【典例分析】
    为了研究某种细菌随天数变化的繁殖个数,收集数据如下:
    天数
    1
    2
    3
    4
    5
    6
    繁殖个数
    6
    12
    25
    49
    95
    190


    (1)在图中作出繁殖个数关于天数变化的散点图,并由散点图判断(为常数)与(为常数,且)哪一个适宜作为繁殖个数关于天数变化的回归方程类型?(给出判断即可,不必说明理由)
    (2)对于非线性回归方程(为常数,且),令,可以得到繁殖个数的对数z关于天数x具有线性关系及一些统计量的值.






    3.50
    62.83
    3.53
    17.50
    596.57
    12.09

    (ⅰ)证明:“对于非线性回归方程,令,可以得到繁殖个数的对数关于天数具有线性关系(即为常数)”;
    (ⅱ)根据(ⅰ)的判断结果及表中数据,建立关于的回归方程(系数保留2位小数).
    附:对于一组数据,其回归直线方程的斜率和截距的最小二乘估计分别为.



    【提分秘籍】
    基本规律
    形如指数型,可以通过去对数换元,构造成线性回归


    【变式演练】
    经观测,某种昆虫的产卵数y与温度x有关,现将收集到的温度和产卵数()的10组观测数据作了初步处理,得到如下图的散点图及一些统计量表.






    275
    731.1
    21.7
    150
    2368.36
    30


    表中,.
    (1)根据散点图判断,,与哪一个适宜作为y与x之间的回归方程模型?(给出判断即可,不必说明理由)
    (2)根据(1)的判断结果及表中数据,试求y关于x的回归方程.



    【题型七】非线性回归3:型
    【典例分析】
    2022年6月5日是世界环境日,十三届全国人大常委会第三十二次会议表决通过的《中华人民共和国噪声污染防治法》今起施行.噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了解声音强度(单位:)与声音能量(单位:)之间的关系,将测量得到的声音强度和声音能量的数据作了初步处理,得到如图所示的散点图:

    (1)根据散点图判断,与哪一个适宜作为声音强度关于声音能量的回归模型?(能给出判断即可,不必说明理由)
    (2)求声音强度关于声音能量的非线性经验回归方程(请使用题后参考数据作答);
    (3)假定当声音强度大于45dB时,会产生噪声污染,城市中某点处共受到两个声源的影响,这两个声源的声音能量分别是和,且.已知点处的声音能量等于与之和,请根据(2)中的非线性经验回归方程,判断点处是否受到噪声污染,并说明理由.
    参考数据:,,令,有,,
    ,,,
    ,,,.

    【提分秘籍】
    基本规律
    形如型,可以通过换元化归为线性回归,令转化为回归直线y=bt+a


    【变式演练】
    受北京冬奥会的影响,更多人开始关注滑雪运动,但由于室外滑雪场需要特殊的气候环境,为了满足日益增长的消费需求,国内出现了越来越多的室内滑雪场.某投资商抓住商机,在某大学城附近开了一家室内滑雪场.经过6个季度的经营,统计该室内滑雪场的季利润数据如下:
    第个季度
    1
    2
    3
    4
    5
    6
    季利润(万元)
    2.2
    3.6
    4.3
    4.9
    5.3
    5.5

    根据上面的数据得到的一些统计量如下:





    4.3
    0.5
    101.4
    14.1
    1.8

    表中,.
    (1)若用方程拟合该室内滑雪场的季利润与季度的关系,试根据所给数据求出该方程;
    (2)利用(1)中得到的方程预测该室内滑雪场从第几个季度开始季利润超过6.5万元;
    附:线性回归方程中,,.参考数据:


    【题型八】非线性回归4:型
    【典例分析】
    某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量(=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.








    46.6
    563
    6.8
    289.8
    1.6
    1469
    108.8

    表中,.
    (1)根据散点图判断,与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)
    (2)根据(1)的判断结果及表中数据,建立关于的回归方程;
    (3)已知这种产品的年利率与、的关系为.根据(Ⅱ)的结果回答下列问题:
    (i)年宣传费时,年销售量及年利润的预报值是多少?
    (ii)年宣传费为何值时,年利率的预报值最大?
    附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:、


    【提分秘籍】
    基本规律
    形如


    【变式演练】
    .某城市选用某种植物进行绿化,设其中一株幼苗从观察之日起,第x天的高度为y cm,测得一些数据如下表所示:
    第x天
    1
    4
    9
    16
    25
    36
    49
    高度y/cm
    0
    4
    7
    9
    11
    12
    13

    作出这组数的散点图如下
    (1)请根据散点图判断,与中哪一个更适宜作为幼苗高度y关于时间x的回归方程类型?(给出判断即可,不必说明理由)

    (2)根据(1)的判断结果及表中数据,建立y关于x的回归方程,并预测第196天这株幼苗的高度(结果保留整数).
    附:,    参考数据:




    140
    28
    56
    283

    【题型九】非线性回归5:型
    【典例分析】
    长沙某公司对其主推产品在过去5个月的月广告投入xi(百万元)和相应的销售额yi(百万元)进行了统计,其中i=1,2,3,4,5,对所得数据进行整理,绘制散点图并计算出一些统计量如下:

    ,,,,,
    ,,其中,i=1,2,3,4,5.
    (Ⅰ)根据散点图判断,与哪一个适宜作为月销售额关于月广告投入xi的回归方程类型?(给出判断即可,不必说明理由)
    (Ⅱ)根据(Ⅰ)的判断结果及题中所给数据,建立y关于x的回归方程,并据此估计月广告投入220万元时的月销售额.
    附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.


    【提分秘籍】
    基本规律



    【变式演练】
    某企业积极响应“碳达峰”号召,研发出一款性能优越的新能源汽车,备受消费者青睐.该企业为了研究新能源汽车在某地区每月销售量(单位:千辆)与月份的关系,统计了今年前5个月该地区的销售量,得到下面的散点图及一些统计量的值.








    表中.
    (1)根据散点图判断两变量的关系用与哪一个比较合适?(给出判断即可,不必说明理由)
    (2)根据(1)的判断结果及表中数据,建立关于的回归方程(的值精确到),并预测从今年几月份起该地区的月销售量不低于万辆?
    附:对于一组数据,其回归直线方程的斜率和截距的最小二乘法估计分别为.


    【题型十】残差拟合判断
    【典例分析】
    近年来,美国方面滥用国家力量,不择手段打压中国高科技企业,随着贸易战的不断升级,中国某科技公司为了不让外国“卡脖子”,决定在企业预算中减少宣传广告预算,增加对技术研究和人才培养的投入,下表是的连续7年研发投入x和公司年利润y的观测数据,根据绘制的散点图决定用回归模型:来进行拟合.
    表I
    研发投入(亿元)
    20
    22
    25
    27
    29
    31
    35
    年利润(亿元)
    7
    11
    21
    24
    65
    114
    325

    表II(注:表中)





    189
    567

    162
    78106






    3040




    (1)请借助表II中的数据,求出回归模型的方程;(精确到0.01)
    (2)试求研发投入为20亿元时年利润的残差.
    参考数据:,附:回归方程中和,残差



    【提分秘籍】
    基本规律
    残差计算:


    【变式演练】
    红铃虫是棉花的主要害虫之一,也侵害木棉、锦葵等植物.为了防治虫害,从根源上抑制害虫数量.现研究红铃虫的产卵数和温度的关系,收集到7组温度和产卵数的观测数据于表Ⅰ中.根据绘制的散点图决定从回归模型①与回归模型②中选择一个来进行拟合.
    表Ⅰ
    温度x/℃
    20
    22
    25
    27
    29
    31
    35
    产卵数y/个
    7
    11
    21
    24
    65
    114
    325

    (1)请借助表Ⅱ中的数据,求出回归模型①的方程:
    表Ⅱ(注:表中)






    189
    567
    25.27
    162
    78106





    11.06
    3040
    41.86
    825.09


    (2)类似的,可以得到回归模型②的方程为,试求两种模型下温度为时的残差;
    (3)若求得回归模型①的相关指数,回归模型②的相关指数,请结合(2)说明哪个模型的拟合效果更好.
    参考数据:.
    附:回归方程中,。相关指数.



    【题型十】数据丢失或剔除型
    【典例分析】
    为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:
    抽取次序
    1
    2
    3
    4
    5
    6
    7
    8
    零件尺寸
    9.95
    10.12
    9.96
    9.96
    10.01
    9.92
    9.98
    10.04
    抽取次序
    9
    10
    11
    12
    13
    14
    15
    16
    零件尺寸
    10.26
    9.91
    10.13
    10.02
    9.22
    10.04
    10.05
    9.95

    经计算得, , , ,其中为抽取的第个零件的尺寸, .
    (1)求 的相关系数,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
    (2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
    (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
    (ⅱ)在之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
    附:样本 的相关系数, .


    【提分秘籍】
    基本规律

    剔除数据时,要注意平均值和公式数据的相关计算



    【变式演练】
    近年来,政府相关部门引导乡村发展旅游的同时,鼓励农户建设温室大棚种植高品质农作物.为了解某农作物的大棚种植面积对种植管理成本的影响,甲,乙两同学一起收集6家农户的数据,进行回归分析,得到两个回归摸型:模型①:,模型②: ,对以上两个回归方程进行残差分析,得到下表:
    种植面积(亩)
    2
    3
    4
    5
    7
    9
    每亩种植管理成本(百元)
    25
    24
    21
    22
    16
    14
    模型①
    估计值
    25.27
    23.62
    21.97

    17.02
    13.72
    残差
    -0.27
    0.38
    -0.97

    -1.02
    0.28
    模型②

    26.84

    20.17
    18.83
    17.31
    16.46

    -1.84

    0.83
    3.17
    -1.31
    -2.46

    (1)将以上表格补充完整,并根据残差平方和判断哪个模型拟合效果更好;
    (2)视残差的绝对值超过1.5的数据视为异常数据,针对(1)中拟合效果较好的模型,剔除异常数据后,重新求回归方程.
    附:, ;





    1.(2022·全国·统考高考真题)甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:

    准点班次数
    未准点班次数
    A
    240
    20
    B
    210
    30

    (1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;
    (2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
    附:,

    0.100
    0.050
    0.010

    2.706
    3.841
    6.635



    2.(2022·全国·统考高考真题)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据:
    样本号i
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    总和
    根部横截面积
    0.04
    0.06
    0.04
    0.08
    0.08
    0.05
    0.05
    0.07
    0.07
    0.06
    0.6
    材积量
    0.25
    0.40
    0.22
    0.54
    0.51
    0.34
    0.36
    0.46
    0.42
    0.40
    3.9

    并计算得.
    (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
    (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
    (3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
    附:相关系数.

    3.(2021·全国·统考高考真题)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
    旧设备
    9.8
    10.3
    10.0
    10.2
    9.9
    9.8
    10.0
    10.1
    10.2
    9.7
    新设备
    10.1
    10.4
    10.1
    10.0
    10.1
    10.3
    10.6
    10.5
    10.4
    10.5

    旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
    (1)求,,,;
    (2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).

    4.(2016·全国·高考真题)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

    记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.
    (Ⅰ)若=19,求y与x的函数解析式;
    (Ⅱ)若要求“需更换的易损零件数不大于”的频率不小于0.5,求的最小值;
    (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?

    5.(2017·全国·高考真题)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.
    (1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及X的数学期望;
    (2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
    (ⅰ)试说明上述监控生产过程方法的合理性;
    (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
    9.95
    10.12
    9.96
    9.96
    10.01
    9.92
    9.98
    10.04
    10.26
    9.91
    10.13
    10.02
    9.22
    10.04
    10.05
    9.95

    经计算得,,其中xi为抽取的第i个零件的尺寸,.
    用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).
    附:若随机变量Z服从正态分布,则,,.

    6.(2020·全国·统考高考真题)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.
    (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
    (2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);
    (3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
    附:相关系数r=,≈1.414.


    1.某市为调查产生的垃圾数量,采用简单随机抽样的方法抽取了20个镇进行分析,得到了样本数据(,2,…,20),其中和分别表示第i个镇的人口(单位:万人)和该镇年垃圾产生总量(单位:吨),并计算得,,,,.
    (1)请用相关系数说明该组数据中y与x之间的线性相关程度;
    (2)求y关于x的线性回归方程;
    (3)某机构有两款垃圾处理机器,其中甲款机器每台售价100万元,乙款机器每台售价80万元,下表是这两款垃圾处理机器的使用年限(整年)统计表:

    1年
    2年
    3年
    4年
    合计
    甲款(台)
    5
    20
    15
    10
    50
    乙款(台)
    15
    20
    10
    5
    50

    根据以往的经验可知,某镇每年可获得政府支持的垃圾处理费用为50万元,若仅考虑购买机器的成本和每台机器的使用年限(使用年限均为整年),以使用年限的频率估计概率,该镇选择购买哪一款垃圾处理机器更划算?

    2.为了解哪些人更关注养生保健,某机构随机抽取了年龄在15~75岁之间的100人进行调查,并按年龄绘制了如图所示的频率分布直方图,其分组区间为:,,,,.把年龄落在区间和内的人分别称为“青少年人”和“中老年人”,经统计“青少年人”与“中老年人”的人数之比为9:11.

    (1)求图中a、b的值;
    (2)已知“青少年人”中有15人在关注养生保健,根据提供的数据完成下面的2×2列联表.据此统计结果,参照附表判断:能否有超过99%的把握认为“中老年人”比“青少年人”更加关注养生保健?

    关注
    不关注
    总计
    青少年人
    15


    中老年人



    总计
    50
    50
    100

    附表:

    0.10
    0.05
    0.025
    0.010
    0.005
    0.001

    2.706
    3.841
    5.024
    6.635
    7.879
    10.828



    3.某市春节期间7家超市的广告费支出(单位:万元)和销售额(单位:万元)数据记录如下表:
    超市
    A
    B
    C
    D
    E
    F
    G
    广告费支出(万元)
    1
    2
    4
    6
    11
    13
    19
    销售额(万元)
    19
    32
    40
    44
    52
    53
    54

    (1)若用线性回归模型拟合y与x的关系,求y关于x的线性回归方程;
    (2)若用二次函数回归模型拟合y与x的关系,可得回归方程为,经计算,二次函数回归模型和线性回归模型的相关指数分别约为0.93和0.75,请用说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出为3万元时的销售额.
    参考数据及公式:,,


    4.有人收集了某10年中某城市居民年收入x(单位:亿元)(即该城市所有居民在一年内收入的总和)与某种商品的销售额y(单位:万元)的相关数据,并记录得到下表:
    第n年
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    年收入x(亿元)
    32.0
    31.0
    33.0
    36.0
    37.0
    38.0
    39.0
    43.0
    45.0

    商品销售额y(万元)
    25.0
    30.0
    34.0
    37.0
    39.0
    41.0
    42.0
    44.0
    48.0


    且已知.
    (1)求第10年的年收入;
    (2)若该城市居民年收入x与该种商品的销售额y之间满足线性回归方程,
    ①求该种商品第10年的销售额;
    ②若该城市居民年收入为40.0亿元,估计这种商品的销售额是多少?(精确到0.01)
    (参考数据:,,)

    5.为了监控某种零件的一条生产线的生产过程,检验员每隔从该生产线上随机抽取一个零件,并测量其尺寸(单位:)做好记录.下表是检验员在一天内依次抽取的个零件的尺寸:
    抽取次序








    零件尺寸()








    抽取次序
    9
    10
    11
    12
    13
    14
    15
    16
    零件尺寸()









    经计算得,,,,其中为抽取的第个零件的尺寸().
    (1)求的相关系数,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);
    (2)一天内抽检的零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
    ①从这一天抽检的结果看,是否需对当天的生产过程进行检查?
    ②在之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到)

    6.2022年,为贯彻落实党的十九届六中全会、中央经济工作会议、中央农村工作会议、中央1号文件精神,围绕巩固拓展脱贫攻坚成果、全面推进乡村振兴、加快农业农村现代化,国家继续加大支农投入,强化项目统筹整合.某企业为合理规划价格,积极响应号召,将某农产品按事先拟定的价格进行试销,得到一组销售数据(,2,3,4,5),如下表所示:
    试销单价(元)
    3
    4
    5
    6
    7
    产品销量(件)
    20
    16
    15
    12
    6

    (1)若变量x,y具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程;
    (2)用表示用(1)中所求的线性回归方程得到的与对应的产品销量的估计值,当销售数据对应的残差的绝对值时,则将销售数据称为一个“次数据”.现从5个销售数据中任取3个,求“次数捃”个数的分布列和数学期望.
    (参考公式:线性回归方程中,的最小二乘估计分别为,)

    7.党的十九大提出实施乡村振兴战略以来,农民收入大幅提升,2022年9月23日某市举办中国农民丰收节庆祝活动,粮食总产量有望连续十年全省第一.据统计该市2017年至2021年农村居民人均可支配收入的数据如下表:
    年份
    2017
    2018
    2019
    2020
    2021
    年份代码
    1
    2
    3
    4
    5
    人均可支配收入(单位:万元)






    (1)根据上表统计数据,计算与的相关系数,并判断与是否具有较高的线性相关程度(若,则线性相关程度一般,若则线性相关程度较高,精确到);
    (2)市五届人大二次会议政府工作报告提出,2022年农村居民人均可支配收入力争不低于万元,求该市2022年农村居民人均可支配收入相对2021年增长率最小值(用百分比表示).
    参考公式和数据:相关系数,.


    相关试卷

    专题10-1 统计大题:线性和非线性回归与残差-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(原卷版):

    这是一份专题10-1 统计大题:线性和非线性回归与残差-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(原卷版),共22页。试卷主要包含了热点题型归纳1,最新模考题组练2等内容,欢迎下载使用。

    专题10-1 统计大题:线性和非线性回归与残差-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(解析版):

    这是一份专题10-1 统计大题:线性和非线性回归与残差-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(解析版),共38页。试卷主要包含了热点题型归纳1,最新模考题组练27等内容,欢迎下载使用。

    专题9-4 抛物线性质应用归类-高考数学一轮复习热点题型归纳与变式演练(全国通用):

    这是一份专题9-4 抛物线性质应用归类-高考数学一轮复习热点题型归纳与变式演练(全国通用)

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map