![中考数学一轮综合复习导学案(6)平面直角坐标系,函数的定义和性质、一次函数第1页](http://m.enxinlong.com/img-preview/2/3/14076311/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![中考数学一轮综合复习导学案(6)平面直角坐标系,函数的定义和性质、一次函数第2页](http://m.enxinlong.com/img-preview/2/3/14076311/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![中考数学一轮综合复习导学案(6)平面直角坐标系,函数的定义和性质、一次函数第3页](http://m.enxinlong.com/img-preview/2/3/14076311/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
中考数学一轮综合复习导学案(6)平面直角坐标系,函数的定义和性质、一次函数
展开
这是一份中考数学一轮综合复习导学案(6)平面直角坐标系,函数的定义和性质、一次函数,共8页。学案主要包含了知识网络,要点梳理,2021中考汇编等内容,欢迎下载使用。
中考一轮综合复习导学案(6)
模块六:平面直角坐标系、函数定义和性质、一次函数
【教材涉及章节: 初一下第7章 平面直角坐标系 初二下第19章 一次函数 】
涉及到2021大连中考题题:
【知识网络】变化的世界
函 数
建立数学模型
应
用
概 念
选择方案
概 念
再认识
表示方法
图 象
性 质
一次函数
(正比例函数)
一元一次方程
一元一次不等式
二元一次方程组
与数学问题的综合
与实际问题的综合
列表法
解析法
图象法
【要点梳理】
要点一、有序数对
把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000), (17,190), (21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.
要点二、平面直角坐标系
在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:
❤重点讲解❤:
(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.
(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.
(3)要熟记坐标系中一些特殊点的坐标及特征:
① x轴上的点纵坐标为零;y轴上的点横坐标为零.
② 平行于x轴直线上的点横坐标不相等,纵坐标相等;
平行于y轴直线上的点横坐标相等,纵坐标不相等.
③ 关于x轴对称的点横坐标相等,纵坐标互为相反数;
关于y轴对称的点纵坐标相等,横坐标互为相反数;
关于原点对称的点横、纵坐标分别互为相反数.
④ 象限角平分线上的点的坐标特征:
一、三象限角平分线上的点横、纵坐标相等;
二、四象限角平分线上的点横、纵坐标互为相反数.
注:反之亦成立.
(4)理解坐标系中用坐标表示距离的方法和结论:
① 坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.
② x轴上两点A(x1,0)、B(x2,0)的距离为AB=|x1 - x2|;
y轴上两点C(0,y1)、D(0,y2)的距离为CD=|y1 - y2|.
③ 平行于x轴的直线上两点A(x1,y)、B(x2,y)的距离为AB=|x1 - x2|;
平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD=|y1 - y2|.
(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补
要点三、坐标方法的简单应用
1.用坐标表示地理位置
(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.
❤重点讲解❤:
(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.
(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.
2.用坐标表示平移
(1)点的平移
点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).
❤重点讲解❤:
上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.
(2)图形的平移
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
❤重点讲解❤:
平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.
要点四、函数的相关概念
一般地,在一个变化过程中. 如果有两个变量 与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说 是自变量,是的函数.
是的函数,如果当=时=,那么叫做当自变量为时的函数值.
函数的表示方法有三种:解析式法,列表法,图象法.
要点五、一次函数的相关概念
一次函数的一般形式为,其中、是常数,≠0.特别地,当=0时,一次函数即(≠0),是正比例函数.
要点六、一次函数的图象及性质
1、函数的图象
如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
❤重点讲解❤:
直线可以看作由直线平移||个单位长度而得到(当>0时,向上平移;当<0时,向下平移).说明通过平移,函数与函数的图象之间可以相互转化.
2、一次函数性质及图象特征
掌握一次函数的图象及性质(对比正比例函数的图象和性质)
❤重点讲解❤:
理解、对一次函数的图象和性质的影响:
(1)决定直线从左向右的趋势(及倾斜角的大小——倾斜程度),决定它与轴交点的位置,、一起决定直线经过的象限.
(2)两条直线:和:的位置关系可由其系数确定:
与相交;
,且与平行;
,且与重合;
(3)直线与一次函数图象的联系与区别
一次函数的图象是一条直线;特殊的直线、直线不是一次函数的图象.
要点七、用函数的观点看方程、方程组、不等式
方程(组)、不等式问题
函 数 问 题
从“数”的角度看
从“形”的角度看
求关于、的一元一次方程=0(≠0)的解
为何值时,函数的值为0?
确定直线与轴(即直线=0)交点的横坐标
求关于、的二元一次方程组的解.
为何值时,函数与函数的值相等?
确定直线与直线的交点的坐标
求关于的一元一次不等式>0(≠0)的解集
为何值时,函数的值大于0?
确定直线在轴(即直线=0)上方部分的所有点的横坐标的范围
【2021中考汇编】
一、选择题
1.(2021•四川省成都市)在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是( )
A.(﹣4,2) B.(4,2) C.(﹣4,﹣2) D.(4,﹣2)
2. 2021•湖北省荆州市)若点P(a+1,2﹣2a)关于x轴的对称点在第四象限,则a的取值范围在数轴上表示为( )
A. B. C.D.
3. (2021•四川省凉山州)在平面直角坐标系中,将线段AB平移后得到线段,点的对应点的坐标为,则点的对应点的坐标为( )
A. B. C. D.
4. (2021•泸州市)在平面直角坐标系中,将点A(-3,-2)向右平移5个单位长度得到点B,则点B关于y轴对称点的坐标为( )
A. (2,2) B. (-2,2) C. (-2,-2) D. (2,-2)
5. (2021•海南省)如图,点A、B、C都在方格纸的格点上,若点A的坐标为(0,2),点B的坐标为(2,0),则点C的坐标是( )
A.(2,2) B.(1,2) C.(1,1) D.(2,1)
6. (2021•广西贺州市)在平面直角坐标系中,点关于原点对称的点的坐标是( )
A. (-3,2) B. (3,-2) C. (-2,-3) D. (-3,-2)
7. (2021•湖北省黄石市)如图,的三个顶点都在方格纸的格点上,其中点的坐标是,现将绕点按逆时针方向旋转,则旋转后点的坐标是( )
A. B. C. D.
8. (2021•甘肃省定西市)如图1,在△ABC中,AB=BC,BD⊥AC于点D(AD>BD).动点M从A点出发,沿折线AB→BC方向运动,运动到点C停止.设点M的运动路程为x,△AMD的面积为y,y与x的函数图象如图2,则AC的长为( )
A.3 B.6 C.8 D.9
9. (2021•湖北省黄冈市)如图,AC为矩形ABCD的对角线,已知AD=3,点P沿折线C﹣A﹣D以每秒1个单位长度的速度运动(运动到D点停止),过点P作PE⊥BC于点E( )
A.B. C. D.
10. (2021•湖南省邵阳市)某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.如图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是( )
A.小明修车花了15min
B.小明家距离学校1100m
C.小明修好车后花了30min到达学校
D.小明修好车后骑行到学校的平均速度是3m/s
11. (2021•山东省菏泽市)如图(1),在平面直角坐标系中,矩形ABCD在第一象限,且BC∥x轴,直线y=2x+1沿x轴正方向平移,在平移过程中,直线被矩形ABCD截得的线段长为a,直线在x轴上平移的距离为b,a、b间的函数关系图象如图(2)所示,那么矩形ABCD的面积为( )
A. B.2 C.8 D.10
12. (2021•泸州市)函数的自变量x的取值范围是( )
A. x<1 B. x>1 C. x≤1 D. x≥1
13. (2021•青海省)新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1、S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( )
A.B. C. D.
14. (2021•新疆)如图,在矩形ABCD中,,.点P从点A出发,以2cm/s的速度在矩形的边上沿运动,当点P与点D重合时停止运动.设运动的时间为(单位:s),的面积为S(单位:),则S随t变化的函数图象大致为( )
A. B. C. D.
15. (2021•重庆市B)小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家.如图,反映了小明离家的距离y(单位:km)与时间t(单位:h)之间的对应关系.下列描述错误的是( )
A.小明家距图书馆3km
B.小明在图书馆阅读时间为2h
C.小明在图书馆阅读书报和往返总时间不足4h
D.小明去图书馆的速度比回家时的速度快
16. (2021•海南省)李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )
A.B. C. D.
17. (2021•江苏省无锡市)函数y=中自变量x的取值范围是( )
A.x>2 B.x≥2 C.x<2 D.x≠2
18. (2021•齐齐哈尔市) 某人驾车匀速从甲地前往乙地,中途停车休息了一段时间,出发时油箱中有40升油,到乙地后发现油箱中还剩4升油.则油箱中所剩油y(升)与时间t(小时)之间函数图象大致是( )
A. B. C. D.
19. (2021•浙江省衢州卷)已知A,B两地相距60km,甲、乙两人沿同一条公路从A地出发到B地,甲骑自行车匀速行驶3h到达,乙骑摩托车.比甲迟1h出发,行至30km处追上甲,停留半小时后继续以原速行驶.他们离开A地的路程y与甲行驶时间x的函数图象如图所示.当乙再次追上甲时距离B地( )
A. 15km B. 16km C. 44km D. 45km
20. (2021•湖北省黄石市) 函数的自变量的取值范围是( )
A. B. C. 且 D. 且
21.(2021•山东省临沂市)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.如图为表示镭的放射规律的函数图象,据此可计算32mg镭缩减为1mg所用的时间大约是( )
A.4860年 B.6480年 C.8100年 D.9720年
22. (2021·安徽省)某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为( )
A. 23cm B. 24cm C. 25cm D. 26cm
23. (2021•甘肃省定西市)将直线y=5x向下平移2个单位长度,所得直线的表达式为( )
A.y=5x﹣2 B.y=5x+2 C.y=5(x+2) D.y=5(x﹣2)
24. (2021•湖北省武汉市)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变(单位:km)与慢车行驶时间t(单位:h)的函数关系如图, 两车先后两次相遇的间隔时间是( )
A.h B.h C.h D.h
25. (2021•长沙市)下列函数图象中,表示直线的是( )
A. B. C. D.
26. (江苏省苏州市)已知点A(,m),B(,n)在一次函数y=2x+1的图象上,则m与n的大小关系( )
A.m>n B.m=n C.m<n D.无法确定
27. (2021•江苏省扬州)如图,一次函数的图像与x轴、y轴分别交于点A、B,把直线绕点B顺时针旋转交x轴于点C,则线段长为( )
A. B. C. D.
28. (2021•陕西省)在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象( )
A.﹣5 B.5 C.﹣6 D.6
29. (2021•上海市)已知函数经过二、四象限,且函数不经过,请写出一个符合条件的函数解析式_________.
30. (2021•四川省乐山市)如图,已知直线与坐标轴分别交于、两点,那么过原点且将的面积平分的直线的解析式为( )
A. B. C. D.
10. (2021•重庆市A)甲无人机从地面起飞,乙无人机从距离地面20m高的楼顶起飞,两架无人机同时匀速上升10s.甲、乙两架无人机所在的位置距离地面的高度y(单位:m)与无人机上升的时间x(单位:s)之间的关系如图所示.下列说法正确的是( )
A. 5s时,两架无人机都上升了40m
B. 10s时,两架无人机的高度差为20m
C. 乙无人机上升的速度为8m/s
D. 10s时,甲无人机距离地面的高度是60m
11. (2021•呼和浩特市)在平面直角坐标系中,点,.以为一边在第一象限作正方形,则对角线所在直线的解析式为( )A
A. B. C. D.
12. (2021•贵州省贵阳市)小星在“趣味数学”社团活动中探究了直线交点个数的问题.现有7条不同的直线y=knx+bn(n=1,2,3,4,5,6,7),其中k1=k2,b3=b4=b5,则他探究这7条直线的交点个数最多是( )
A.17个 B.18个 C.19个 D.21个
13. (2021•广西来宾市)一次函数的图象不经过( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
二.填空题
1. (2021•江苏省南京市)如图,在平面直角坐标系中,的边的中点C,D的横坐标分别是1,4,则点B的横坐标是_______.
2. (2021•江苏省扬州)在平面直角坐标系中,若点在第二象限,则整数m的值为_________.
3. (2021•山西)如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少数突出的齿,将其放在平面直角坐标系中,表示叶片“顶部”A,B 两点的坐标分别为(-2, 2) , (-3, 0) , 则叶杆“底部”点 C 的坐标为
4. (2021•湖北省宜昌市)如图,在平面直角坐标系中,将点A(﹣1,2)向右平移2个单位长度得到点B,则点B关于x轴的对称点C的坐标是 .
5. (2021•浙江省金华市)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC及四边形②的边CD都在x轴上,“猫”耳尖E在y轴上.若“猫”尾巴尖A的横坐标是1,则“猫”爪尖F的坐标是 .
6. (2021•青海省)已知点A(2m﹣5,6﹣2m)在第四象限,则m的取值范围是 .
7. (2021•怀化市)函数y=的自变量x的取值范围是 .
8. (2021•上海市)已知,那么__________.
9. (2021•湖南省永州市)已知函数y=,若y=2,则x= .
10.(2021•湖南省娄底市) 函数中,自变量的取值范围是__________.
11. (2021•四川省成都市)在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第 象限.
12.(2021•四川省眉山市)一次函数y=(2a+3)x+2的值随x值的增大而减少,则常数a的取值范围是 .
13. (2021•四川省自贡市)当自变量时,函数(k为常数)的最小值为,则满足条件的k的值为_________.
14. (2021•天津市)将直线向下平移2个单位长度,平移后直线的解析式为_____.
15. (2021•湖北省黄石市)将直线向左平移()个单位后,经过点(1,−3),则的值为______.
三、解答题
1. (2021•浙江省嘉兴市)根据数学家凯勒的“百米赛跑数学模型”,前30米称为“加速期”,30米~80米为“中途期”,80米~100米为“冲刺期”.市田径队把运动员小斌某次百米跑训练时速度y(m/s)与路程x(m)之间的观测数据,绘制成曲线如图所示.
(1)y是关于x的函数吗?为什么?
(2)“加速期”结束时,小斌的速度为多少?
(3)根据如图提供的信息,给小斌提一条训练建议.
2. (2021•甘肃省定西市)如图1,小刚家、学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离y(m)与他所用的时间x(min)的函数关系如图2所示.
(1)小刚家与学校的距离为 m,小刚骑自行车的速度为 m/min;
(2)求小刚从图书馆返回家的过程中,y与x的函数表达式;
(3)小刚出发35分钟时,他离家有多远?
3. (2021•江苏省南京市)甲、乙两人沿同一直道从A地去B地,甲比乙早出发,乙的速度是甲的2倍.在整个行程中,甲离A地的距离(单位:m)与时间x(单位:)之间的函数关系如图所示.
(1)在图中画出乙离A地的距离(单位:m)与时间x之间的函数图;
(2)若甲比乙晚到达B地,求甲整个行程所用的时间.
4. (2021•陕西省)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”、“猫”距起点的距离y(m)(min)之间的关系如图所示.
(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是 1 m/min;
(2)求AB的函数表达式;
(3)求“猫”从起点出发到返回至起点所用的时间.
5. (2021•浙江省绍兴市)Ⅰ号无人机从海拔10m处出发,以10m/min的速度匀速上升,Ⅱ号无人机从海拔30m处同时出发(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m)(m)与时间x(min)的关系如图.两架无人机都上升了15min.
(1)求b的值及Ⅱ号无人机海拔高度y(m)与时间x(min)的关系式;
(2)问无人机上升了多少时间,Ⅰ号无人机比Ⅱ号无人机高28米.
6. (2021•北京市)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到.
(1)求这个一次函数的解析式;
(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.
7. (2021•呼和浩特市)下面图片是七年级教科书中“实际问题与一元一次方程”的探究3.
探究3
电话计费问题
月使用费/元
主叫限定时间/min
主叫超时费/(元/min)
被叫
方式一
58
150
0.25
免费
方式二
88
350
019
免费
月使用费固定收:
主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费。
考虑下列问题:
(1)设一个月内用移动电话主叫为min(t是正整数)根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费
(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.
小明升入初三再看这个问题,发现两种计费方式,每一种都是因主叫时间的变化而引起计费的变化,他把主叫时间视为在正实数范围内变化,决定用函数来解决这个问题.
(1)根据函数的概念,小明首先将问题中的两个变量分别设为自变量x和自变量的函数y,请你帮小明写出:
x表示问题中的__________,y表示问题中的__________.
并写出计费方式一和二分别对应的函数解析式;
(2)在给出的正方形网格纸上画出(1)中两个函数的大致图象,并依据图象直接写出如何根据主叫时间选择省钱的计费方式.(注:坐标轴单位长度可根据需要自己确定)
8. (2021•齐齐哈尔市)在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:
(1)请写出甲的骑行速度为 米/分,点M的坐标为 ;
(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);
(3)请直接写出两人出发后,在甲返回A地之前,经过多长时间两人距C地的路程相等.
9. (2021•黑龙江省龙东地区)已知A、B两地相距,一辆货车从A地前往B地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从B地前往A地,到达A地后(在A地停留时间不计)立即原路原速返回.如图是两车距B地的距离与货车行驶时间之间的函数图象,结合图象回答下列问题:
(1)图中m的值是__________;轿车的速度是________;
(2)求货车从A地前往B地的过程中,货车距B地的距离与行驶时间之间的函数关系式;
(3)直接写出轿车从B地到A地行驶过程中,轿车出发多长时间与货车相距?
相关学案
这是一份中考一轮综合复习导学案(17)锐角三角函数,共11页。学案主要包含了知识网络,要点梳理,2021中考汇编等内容,欢迎下载使用。
这是一份中考数学一轮综合复习导学案(7)反比例函数,共8页。学案主要包含了知识网络,要点梳理,2021中考汇编等内容,欢迎下载使用。
这是一份初二复习3--平面直角坐标系和一次函数学案,共8页。学案主要包含了典例精讲,巩固练习等内容,欢迎下载使用。
![英语朗读宝](http://m.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)