高考数学一轮复习 专题8.8 立体几何综合问题(练)
展开高考数学一轮复习策略
1、揣摩例题。
课本上和老师讲解的例题,一般都具有一定的典型性和代表性。要认真研究,深刻理解,要透过“样板”,学会通过逻辑思维,灵活运用所学知识去分析问题和解决问题,特别是要学习分析问题的思路、解决问题的方法,并能总结出解题的规律。
2、精练习题
复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
3、加强审题的规范性
每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
4、重视错题
“错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
专题8.8 立体几何综合问题
1.(2020·上海市建平中学月考)已知是空间两个不同的平面,则“平面上存在不共线的三点到平面的距离相等”是“”的( )
A.充分非必要条件 B.必要非充分条件
C.充要条件 D.非充分非必要条件
2.(2020·全国高三专题练习(文))将地球近似看作球体.设地球表面某地正午太阳高度角为,为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )
A.北纬 B.南纬
C.北纬 D.南纬
3.(湖北高考真题)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长与高,计算其体积的近似公式它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的近似取为( )
A. B. C. D.
4.(2021·永州市第四中学高三月考)农历五月初五是端午节.这一天民间有吃粽子的习俗,据说是为了纪念战国时期楚国大臣、爱国诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到六面体的粽子.如果粽子的馅是六面体内的一个球状物,则粽子馅的最大体积为_________.
5.(2021·四川省大竹中学高二期中(理))在正方体中,点E是棱BC的中点,点F是棱CD上的动点,当__________时,平面.
6.(2021·浙江高二期末)如图在四棱锥中,平面,,,,,,E是直线上的一个动点,则与平面所成角的最大值为________.
7.(2021·浙江高二期中)在四棱锥中,四边形为正方形,,,平面平面,,点为上的动点,平面与平面所成的二面角为(为锐角),则当取最小值时,三棱锥的体积为____.
8.(2021·全国高三其他模拟(理))莱昂哈德·欧拉,瑞士数学家和物理学家,近代数学先驱之一,他的研究论著几乎涉及到所有数学分支,有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的.欧拉发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总满足数量关系,此式称为欧拉公式,已知某凸32面体,12个面是五边形,20个面是六边形,则该32面体的棱数为___________;顶点的个数为___________.
9.(2020·四川泸县五中高二开学考试(理))如图,在四棱柱中,底面是正方形,平面平面,,.过顶点,的平面与棱,分别交于,两点.
(Ⅰ)求证:;
(Ⅱ)求证:四边形是平行四边形;
(Ⅲ)若,试判断二面角的大小能否为?说明理由.
10.(2021·济南市历城第二中学开学考试)在四棱锥中,侧面⊥底面,底面为直角梯形,//,,,,为的中点.
(Ⅰ)求证:PA//平面BEF;
(Ⅱ)若PC与AB所成角为,求的长;
(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A的余弦值.
1.(2021·福建其他)《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的鳖臑中,平面,,,,为中点,为内的动点(含边界),且.①当在上时,______;②点的轨迹的长度为______.
2.(2020·福建省福州第一中学高三期末(理))分别为菱形的边的中点,将菱形沿对角线折起,使点不在平面内,则在翻折过程中,以下命题正确的是___________.(写出所有正确命题的序号)
①平面;②异面直线与所成的角为定值;③在二面角逐渐渐变小的过程中,三棱锥的外接球半径先变小后变大;④若存在某个位程,使得直线与直线垂直,则的取值范围是.
3.(2020·全国高三专题练习(文))现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.
4.(2021·江苏南京市第二十九中学高三月考)在正三棱柱中,,点满足,其中,.
(1)当时,三棱锥的体积为______.
(2)当时,存在点,使得平面,则的取值集合为______.
5.(2021·进贤县第一中学高二月考(理))如图,在棱长为 1 的正方体中,点是的中点,动点在底面正方形内(不包括边界),若平面,则长度的取值范围是_______.
6.(2021·贵州贵阳一中高三月考(文))如图甲为直角三角形ABC,B=,AB=4,BC=,且BD为斜边AC上的高,将三角形ABD沿BD折起,得到图乙的四面体A-BCD,E,F分别在DC与BC上,且满足,H,G分别为AB与AD的中点.
(1)证明:直线EG与FH相交,且交点在直线AC上;
(2)当四面体A-BCD的体积最大时,求四边形EFHG的面积.
7.(2021·山东高三二模)如图①所示,平面五边形ABCDE中,四边形ABCD为直角梯形,∠B=90°且AD∥BC,若AD=2BC=2,AB=,△ADE是以AD为斜边的等腰直角三角形,现将△ADE沿AD折起,连接EB,EC得如图②的几何体.
图① 图②
(1)若点M是ED的中点,求证:CM∥平面ABE;
(2)若EC=2,在棱EB上是否存在点F,使得二面角E-AD-F的大小为60°?若存在,求出点F的位置;若不存在,请说明理由.
8.(2021·福建其他)已知圆柱底面半径为1,高为,是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线如图所示.将轴截面绕着轴逆时针旋转后,边与曲线相交于点.
(1)求曲线的长度;
(2)当时,求点到平面的距离.
9.(2020·江西上高二中高二月考(理))如图,四棱锥中,,,,,.
(1)求证:平面平面;
(2)在线段上是否存在点,使得平面与平面所成锐二面角为?若存在,求的值;若不存在,说明理由.
10.(2021·天津市滨海新区塘沽第一中学高三月考)已知如图,四边形为矩形,为梯形,平面平面,,,.
(1)若为中点,求证:平面;
(2)求直线与平面所成角的正弦值;
(3)在线段上是否存在一点(除去端点),使得平面与平面所成锐二面角的大小为?若存在,请说明点的位置;若不存在,请说明理由.
1.(2020·全国高考真题(理))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )
A. B. C. D.
2.(2018·浙江高考真题)已知四棱锥的底面是正方形,侧棱长均相等,是线段上的点(不含端点),设与所成的角为,与平面所成的角为,二面角的平面角为,则( )
A. B. C. D.
3.(2019·全国高考真题(文))中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.
4.(2018·天津高考真题(理))如图,且AD=2BC,,且EG=AD,且CD=2FG,,DA=DC=DG=2.
(I)若M为CF的中点,N为EG的中点,求证:;
(II)求二面角的正弦值;
(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.
5.(2021·全国高考真题(理))已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.
(1)证明:;
(2)当为何值时,面与面所成的二面角的正弦值最小?
6.(2021·全国高考真题(理))已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.
(1)证明:;
(2)当为何值时,面与面所成的二面角的正弦值最小?
专题8.8 立体几何中角与距离的向量求法(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题8.8 立体几何中角与距离的向量求法(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题88立体几何中角与距离的向量求法原卷版docx、专题88立体几何中角与距离的向量求法解析版docx等2份试卷配套教学资源,其中试卷共82页, 欢迎下载使用。
新高考数学一轮复习讲练测专题8.8立体几何综合问题(讲)(含解析): 这是一份新高考数学一轮复习讲练测专题8.8立体几何综合问题(讲)(含解析),共28页。
新高考数学一轮复习讲练测专题8.8立体几何综合问题(练)(含解析): 这是一份新高考数学一轮复习讲练测专题8.8立体几何综合问题(练)(含解析),共37页。试卷主要包含了 2 等内容,欢迎下载使用。