所属成套资源:【备考2023】高考数学真题重组卷(新高考地区专用)(含解析)
卷01——【备考2023】高考数学真题重组卷(新高考地区专用)(含解析)
展开
这是一份卷01——【备考2023】高考数学真题重组卷(新高考地区专用)(含解析)
冲刺2023年高考数学真题重组卷01新高考地区专用(参考答案)一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】利用补集的定义可得正确的选项.【详解】由补集定义可知:或,即,故选:D.2.A【解析】先算出,再代入计算,实部与虚部都为零解方程组即可【详解】由,结合复数相等的充要条件为实部、虚部对应相等,得,即故选:3.C【解析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得【详解】解:,,即,解得,故选:C4.D【解析】作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.【详解】该几何体由直三棱柱及直三棱柱组成,作于M,如图,因为,所以,因为重叠后的底面为正方形,所以,在直棱柱中,平面BHC,则,由可得平面,设重叠后的EG与交点为则则该几何体的体积为.故选:D.5.C【解析】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有种排法,若2个0不相邻,则有种排法,所以2个0不相邻的概率为.故选:C.6.A【解析】根据三角函数的图象与性质,以及变换法则即可判断各说法的真假.【详解】因为,所以的最小正周期为,①不正确;令,而在上递增,所以在上单调递增,②正确;因为,,所以,③不正确;由于,所以的图象可由的图象向右平移个单位长度得到,④不正确.故选:A.7.C【解析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为,所以球的半径,[方法一]:导数法设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为,又时,,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.故选:C.[方法二]:基本不等式法由方法一故所以当且仅当取到,当时,得,则当时,球心在正四棱锥高线上,此时,,正四棱锥体积,故该正四棱锥体积的取值范围是8.C【分析】构造函数, 导数判断其单调性,由此确定的大小.【详解】方法一:构造法设,因为,当时,,当时,所以函数在单调递减,在上单调递增,所以,所以,故,即,所以,所以,故,所以,故,设,则,令,,当时,,函数单调递减,当时,,函数单调递增,又,所以当时,,所以当时,,函数单调递增,所以,即,所以故选:C.方法二:比较法解: , , , ① , 令 则 , 故 在 上单调递减, 可得 ,即 ,所以 ; ② , 令 则 , 令 ,所以 , 所以 在 上单调递增,可得 ,即 , 所以 在 上单调递增,可得 ,即 ,所以 故 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.ABD【解析】数形结合,依次对所给选项进行判断即可.【详解】如图,连接、,因为,所以直线与所成的角即为直线与所成的角,因为四边形为正方形,则,故直线与所成的角为,A正确;连接,因为平面,平面,则,因为,,所以平面,又平面,所以,故B正确;连接,设,连接,因为平面,平面,则,因为,,所以平面,所以为直线与平面所成的角,设正方体棱长为,则,,,所以,直线与平面所成的角为,故C错误;因为平面,所以为直线与平面所成的角,易得,故D正确.故选:ABD10.BC【解析】根据基本不等式或者取特值即可判断各选项的真假.【详解】因为(R),由可变形为,,解得,当且仅当时,,当且仅当时,,所以A错误,B正确;由可变形为,解得,当且仅当时取等号,所以C正确;因为变形可得,设,所以,因此,所以当时满足等式,但是不成立,所以D错误.故选:BC.11.ACD【解析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.【详解】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,代入抛物线可得,则,则直线的斜率为,A正确;对于B,由斜率为可得直线的方程为,联立抛物线方程得,设,则,则,代入抛物线得,解得,则,则,B错误;对于C,由抛物线定义知:,C正确;对于D,,则为钝角,又,则为钝角,又,则,D正确.故选:ACD.12.BC【分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】[方法一]:对称性和周期性的关系研究对于,因为为偶函数,所以即①,所以,所以关于对称,则,故C正确;对于,因为为偶函数,,,所以关于对称,由①求导,和,得,所以,所以关于对称,因为其定义域为R,所以,结合关于对称,从而周期,所以,,故B正确,D错误;若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知周期为2,关于对称,故可设,则,显然A,D错误,选BC.故选:BC.[方法三]:因为,均为偶函数,所以即,,所以,,则,故C正确;函数,的图象分别关于直线对称,又,且函数可导,所以,所以,所以,所以,,故B正确,D错误;若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.故选:BC.【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.三、填空题:本题共4小题,每小题5分,共20分.13.160【解析】求出二项式的展开式通项,令的指数为6即可求出.【详解】的展开式的通项为,令,解得,所以的系数是.故答案为:160.14.【解析】首先求出点关于对称点的坐标,即可得到直线的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【详解】解:关于对称的点的坐标为,在直线上,所以所在直线即为直线,所以直线为,即;圆,圆心,半径,依题意圆心到直线的距离,即,解得,即;故答案为:15.【分析】结合导数的几何意义可得,结合直线方程及两点间距离公式可得,,化简即可得解.【详解】由题意,,则,所以点和点,,所以,所以,所以,同理,所以.故答案为:【点睛】关键点点睛:解决本题的关键是利用导数的几何意义转化条件,消去一个变量后,运算即可得解.16.13【解析】利用离心率得到椭圆的方程为,根据离心率得到直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:,代入椭圆方程,整理化简得到:,利用弦长公式求得,得,根据对称性将的周长转化为的周长,利用椭圆的定义得到周长为.【详解】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为, 直线的方程:,代入椭圆方程,整理化简得到:,判别式,∴,∴ , 得, ∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.故答案为:13.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(1);(2)见解析【解析】(1)利用等差数列的通项公式求得,得到,利用和与项的关系得到当时,,进而得:,利用累乘法求得,检验对于也成立,得到的通项公式;(2)由(1)的结论,利用裂项求和法得到,进而证得.【详解】(1)∵,∴,∴,又∵是公差为的等差数列,∴,∴,∴当时,,∴,整理得:,…………3分即,∴,显然对于也成立,∴的通项公式;…………6分(2) ∴…………10分18.(I);(II)【解析】(I)方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B的大小;(II)方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A的三角函数式,然后由三角形为锐角三角形确定角A的取值范围,最后结合三角函数的性质即可求得的取值范围.【详解】(I)[方法一]:余弦定理由,得,即.结合余弦定,∴,即,即,即,即,∵为锐角三角形,∴,∴,所以,又B为的一个内角,故.…………6分[方法二]【最优解】:正弦定理边化角由,结合正弦定理可得:为锐角三角形,故.(II) [方法一]:余弦定理基本不等式因为,并利用余弦定理整理得,即.结合,得.由临界状态(不妨取)可知.而为锐角三角形,所以.由余弦定理得,,代入化简得故的取值范围是.…………12分[方法二]【最优解】:恒等变换三角函数性质结合(1)的结论有:.由可得:,,则,.即的取值范围是.【整体点评】(I)的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II)的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解.19.(1);(2)【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,由已知条件得出,求出的值,即可得出的长;(2)求出平面、的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.【详解】(1)[方法一]:空间坐标系+空间向量法平面,四边形为矩形,不妨以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设,则、、、、,则,,,则,解得,故;[方法二]【最优解】:几何法+相似三角形法如图,连结.因为底面,且底面,所以.又因为,,所以平面.又平面,所以.从而.因为,所以.所以,于是.所以.所以.…………6分 [方法三]:几何法+三角形面积法 如图,联结交于点N.由[方法二]知.在矩形中,有,所以,即.令,因为M为的中点,则,,.由,得,解得,所以.…………6分(2)[方法一]【最优解】:空间坐标系+空间向量法设平面的法向量为,则,,由,取,可得,设平面的法向量为,,,由,取,可得,,所以,,因此,二面角的正弦值为.…………12分[方法二]:构造长方体法+等体积法 如图,构造长方体,联结,交点记为H,由于,,所以平面.过H作的垂线,垂足记为G.联结,由三垂线定理可知,故为二面角的平面角.易证四边形是边长为的正方形,联结,.,由等积法解得.在中,,由勾股定理求得.所以,,即二面角的正弦值为.…………12分【整体点评】(1)方法一利用空坐标系和空间向量的坐标运算求解;方法二利用线面垂直的判定定理,结合三角形相似进行计算求解,运算简洁,为最优解;方法三主要是在几何证明的基础上,利用三角形等面积方法求得.(2)方法一,利用空间坐标系和空间向量方法计算求解二面角问题是常用的方法,思路清晰,运算简洁,为最优解;方法二采用构造长方体方法+等体积转化法,技巧性较强,需注意进行严格的论证.20.(1)0.4;(2);(3)丙【解析】(1) 由频率估计概率即可(2) 求解得X的分布列,即可计算出X的数学期望.(3) 计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.【详解】(1)由频率估计概率可得甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,故答案为0.4…………3分(2)设甲获得优秀为事件A1,乙获得优秀为事件A2,丙获得优秀为事件A3,,,.∴X的分布列为∴…………9分(3)丙夺冠概率估计值最大.因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为,甲获得9.80的概率为,乙获得9.78的概率为.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利. …………12分21.(1);(2).【解析】(1) 利用双曲线的定义可知轨迹是以点、为左、右焦点双曲线的右支,求出、的值,即可得出轨迹的方程; (2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C的方程,结合韦达定理求得直线的斜率,最后化简计算可得的值.【详解】(1) 因为,所以,轨迹是以点、为左、右焦点的双曲线的右支,设轨迹的方程为,则,可得,,所以,轨迹的方程为.…………4分(2)[方法一] 【最优解】:直线方程与双曲线方程联立如图所示,设,设直线的方程为.联立,化简得.则.故.则.设的方程为,同理.因为,所以,化简得,所以,即.因为,所以.[方法二] :参数方程法设.设直线的倾斜角为,则其参数方程为,联立直线方程与曲线C的方程,可得,整理得.设,由根与系数的关系得.设直线的倾斜角为,,同理可得由,得.因为,所以.由题意分析知.所以,故直线的斜率与直线的斜率之和为0.…………12分[方法三]:利用圆幂定理因为,由圆幂定理知A,B,P,Q四点共圆.设,直线的方程为,直线的方程为,则二次曲线.又由,得过A,B,P,Q四点的二次曲线系方程为:,整理可得:,其中.由于A,B,P,Q四点共圆,则xy项的系数为0,即.…………12分【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解;方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.22.(1)当时,单调递减,当时,单调递增.(2)【解析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.(2)方法一:首先讨论x=0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a的取值范围.【详解】(1)当时,,,由于,故单调递增,注意到,故:当时,单调递减,当时,单调递增. …………3分(2) [方法一]【最优解】:分离参数由得,,其中,①.当x=0时,不等式为:,显然成立,符合题意;②.当时,分离参数a得,,记,,令,则,,故单调递增,,故函数单调递增,,由可得:恒成立,故当时,,单调递增;当时,,单调递减;因此,,综上可得,实数a的取值范围是.…………12分[方法二]:特值探路当时,恒成立.只需证当时,恒成立.当时,.只需证明⑤式成立.⑤式,令,则,所以当时,单调递减;当单调递增;当单调递减.从而,即,⑤式成立.所以当时,恒成立.综上.…………12分[方法三]:指数集中当时,恒成立,记,,①.当即时,,则当时,,单调递增,又,所以当时,,不合题意;②.若即时,则当时,,单调递减,当时,,单调递增,又,所以若满足,只需,即,所以当时,成立;③当即时,,又由②可知时,成立,所以时,恒成立,所以时,满足题意.综上,.…………12分【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!123456789101112DACDCACCABDBCACDBCX0123P
相关试卷
这是一份重组卷01-冲刺2023年高考数学真题重组卷(新高考地区专用),文件包含重组卷01-冲刺2023年高考数学真题重组卷解析版docx、重组卷01-冲刺2023年高考数学真题重组卷参考答案docx、重组卷01-冲刺2023年高考数学真题重组卷原卷版docx等3份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
这是一份真题重组卷01——2023年高考数学真题汇编重组卷(新高考地区专用),文件包含真题重组卷012023年高考数学真题汇编重组卷解析版docx、真题重组卷012023年高考数学真题汇编重组卷参考答案docx、真题重组卷012023年高考数学真题汇编重组卷原卷版docx等3份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
这是一份重组卷01-冲刺2023年高考数学真题重组卷(新高考地区专用),文件包含重组卷01-冲刺2023年高考数学真题重组卷解析版docx、重组卷01-冲刺2023年高考数学真题重组卷参考答案docx、重组卷01-冲刺2023年高考数学真题重组卷原卷版docx等3份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。