终身会员
搜索
    上传资料 赚现金

    【全套】中考数学复习专题(知识梳理+含答案)预测11 二次函数与几何的综合

    立即下载
    加入资料篮
    【全套】中考数学复习专题(知识梳理+含答案)预测11 二次函数与几何的综合第1页
    【全套】中考数学复习专题(知识梳理+含答案)预测11 二次函数与几何的综合第2页
    【全套】中考数学复习专题(知识梳理+含答案)预测11 二次函数与几何的综合第3页
    还剩42页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【全套】中考数学复习专题(知识梳理+含答案)预测11 二次函数与几何的综合

    展开

    这是一份【全套】中考数学复习专题(知识梳理+含答案)预测11 二次函数与几何的综合,共45页。
     预测11 二次函数与几何的综合

    二次函数是全国中考的热点,也是每年必考的!全国各地的中考数学试题都把二次函数作为压轴题。
    1.从考点频率看,周长、面积、相似、直角三角形和平行四边形与二次函数的综合是高频考点。
    2.从题型角度看,以解答题形式考查,分值约11分。

    常考知识点总结
    1.几何分析法 
    特别是构造“平行四边形”、“梯形”、“相似三角形”、“直角三角形”、“等腰三角形”等图形时,利用几何分析法能给解题带来方便。
    几何要求
    几何分析
    涉及公式
    应用图形
    跟平行有的
    图形 
    平移

    平行四边形 矩形 梯形
    跟直角有关的图形 
    勾股定理逆定理 
    利用相似、全等、平行、对顶角、互余、互补等 

    直角三角形 
    直角梯形 矩形
    跟线段有关的图形
    利用几何中的全等、中垂线的性质等。

    等腰三角形 全等 等腰梯形
    跟角有关的图形 
    利用相似、全等、平行、对顶角、互余、互补等


    2. 两点之间距离公式:
    3.中点坐标:线段AB的中点C的坐标为:
    4.直线的位置关系
    (1)两直线平行 (2)两直线相交
    (3)两直线重合 (4)两直线垂直
    5.三角形面积等于水平宽与铅垂高乘积的一半
    6.点到直线的距离公式

    1.(2019年湖北省黄石市中考数学试题)如图,已知抛物线经过点、.
    (1)求抛物线的解析式,并写出顶点的坐标;
    (2)若点在抛物线上,且点的横坐标为8,求四边形的面积
    (3)定点在轴上,若将抛物线的图象向左平移2各单位,再向上平移3个单位得到一条新的抛物线,点在新的抛物线上运动,求定点与动点之间距离的最小值(用含的代数式表示)

    【答案】(1),;(2)36;(3)
    【解析】
    【分析】
    (1)函数的表达式为:y=(x+1)(x-5),即可求解;
    (2)S四边形AMBC=AB(yC-yD),即可求解;
    (3)抛物线的表达式为:y=x2,即可求解.
    【详解】(1)函数的表达式为:y=(x+1)(x-5)=(x2-4x-5)=,
    点M坐标为(2,-3);
    (2)当x=8时,y=(x+1)(x-5)=9,即点C(8,9),
    S四边形AMBC=AB(yC-yD)=×6×(9+3)=36;
    (3)y=(x+1)(x-5)=(x2-4x-5)=(x-2)2-3,
    抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,
    则新抛物线表达式为:y=x2,
    则定点D与动点P之间距离PD=,
    ∵>0,PD有最小值,当x2=3m-时,
    PD最小值d=.
    【点睛】本题考查的是二次函数综合运用,涉及到图形平移、面积的计算等知识点,难度不大.
    2.(2019年湖南省常德市中考数学试题)如图,已知二次函数图象的顶点坐标为,与坐标轴交于B、C、D三点,且B点的坐标为.
    (1)求二次函数的解析式;
    (2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;
    (3)当矩形MNHG周长最大时,能否在二次函数图象上找到一点P,使的面积是矩形MNHG面积的?若存在,求出该点的横坐标;若不存在,请说明理由.

    【答案】(1) (2)最大值为10
    (3)故点P坐标为:或或.
    【解析】
    【分析】[来源:Zxxk.Com]
    (1)二次函数表达式为:,将点B的坐标代入上式,即可求解;
    (2)矩形MNHG的周长,即可求解;
    (3),解得:,即可求解.
    【详解】(1)二次函数表达式为:,
    将点B的坐标代入上式得:,解得:,
    故函数表达式为:…①;
    (2)设点M的坐标为,则点,
    则,,
    矩形MNHG的周长,
    ∵,故当,C有最大值,最大值为10,
    此时,点与点D重合;
    (3)的面积是矩形MNHG面积的,
    则,
    连接DC,在CD得上下方等距离处作CD的平行线m、n,
    过点P作y轴的平行线交CD、直线n于点H、G,即,
    过点P作于点K,

    将、坐标代入一次函数表达式并解得:
    直线CD的表达式为:,
    ,∴,,
    设点,则点,

    解得:,
    则,
    解得:,
    故点,
    直线n的表达式为:…②,
    联立①②并解得:,
    即点、的坐标分别为、;
    故点P坐标为:或或.
    【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
    3.(广东省2019年中考数学试题)如图1,在平面直角坐标系中,抛物线与轴交于点、(点在点右侧),点为抛物线的顶点.点在轴的正半轴上,交轴于点,绕点顺时针旋转得到,点恰好旋转到点,连接.

    (1)求点、、的坐标;
    (2)求证:四边形是平行四边形;
    (3)如图2,过顶点作轴于点,点是抛物线上一动点,过点作轴,点为垂足,使得与相似(不含全等).
    ①求出一个满足以上条件的点的横坐标;
    ②直接回答这样的点共有几个?
    【答案】(1),,;(2)证明见解析;(3)①点P的横坐标为,,,②点P共有3个.
    【解析】
    【分析】
    (1)令y=0,可得关于x的方程,解方程求得x的值即可求得A、B两点的坐标,对解析式配方可得顶点D的坐标;
    (2)由,CO⊥AF,可得OF=OA=1,如图2,易得,由此可得,继而证明为等边三角形,推导可得,再由,,可得,问题得证;
    (3)①设点的坐标为,分三种情况:点在点左侧,点在点右侧,点在之间,分别讨论即可得;
    ②由①的结果即可得.
    【详解】(1)令,
    解得或,
    故,,
    配方得,故;
    (2)∵,CO⊥AF,
    ∴OF=OA=1,
    如图,DD1⊥轴,∴DD1//CO,


    ∴,
    即,
    ∴,
    ∴CF==2,
    ∴,
    即为等边三角形,
    ∴∠AFC=∠ACF=60°,
    ∵∠ECF=∠ACF,
    ∴,
    ∴,
    ∵CF:DF=OF:FD1=1:2,
    ∴DF=4,∴CD=6,
    又∵,,
    ∴,
    ∴四边形是平行四边形;
    (3)①设点的坐标为,
    (ⅰ)当点在点左侧时,

    因为与相似,
    则1),
    即,
    ∴(舍),x2=-11;
    2),
    即,
    ∴(舍),;
    (ⅱ)当点在点右侧时,

    因为与相似,
    则3),
    即,
    ∴(舍),(舍);
    4),
    即,
    ∴(舍),(舍);
    (ⅲ)当点在之间时,

    ∵与相似,
    则5),
    即,
    ∴(舍),(舍);
    6),
    即,
    ∴(舍),;
    综上所述,点的横坐标为,,;
    ②由①可得这样的点P共有3个.
    【点睛】本题考查的是函数与几何综合题,涉及了等边三角形的判定与性质,平行四边形的判定,相似三角形的判定与性质,解一元二次方程等,综合性较强,有一定的难度,熟练掌握相关知识,正确进行分类讨论并画出符合题意的图形是解题的关键.
    4.(福建省2019年中考数学试题)已知抛物y=ax2+bx+c(b0即可得P点坐标;(4)设∠BAC的角平分线与y轴交于E点,过点E作EF⊥AC,根据角平分线的性质可证明△AFE≌△AOE,可得出AF的长,利用勾股定理可求出OE的长,可得E点坐标,进而利用待定系数法可求出直线AE的解析式,分两种情况:①当∠ABM1=90°时,M1N1=AB,AN1=BM,M1B⊥x轴,可得点M1的横坐标,代入AE的解析式可得点M1的纵坐标,即可得出BM的长,进而可得N1点坐标;②当∠AM2B=90°时,可知∠N2BA=∠BAE,过N2作N2G⊥x轴,根据点E坐标可得∠BAE的正弦值和余弦值,即可求出BN2的长,利用∠N2BA的正弦和余弦可求出N2G和BG的长,进而可得OG的长,即可得N2坐标;综上即可得答案.
    【详解】(1)∵A(-3,0),B(4,0),点A、B在抛物线上,

    解得:,
    ∴抛物线的解析式为:y=x2-x-4.
    (2)连接AC,延长AC交抛物线对称轴与H,
    ∵抛物线解析式为y=x2-x-4,与轴交于点C
    ∴C(0,-4),对称轴为直线x=-=,
    ∵≤AC,
    ∴A、C、H在一条直线上时取最小值,
    设直线AC的解析式为y=kx+b,
    ∴,
    解得:,[来源:Z*xx*k.Com]
    ∴直线AC的解析式为y=x-4,
    当x=时,y=,
    ∴H点坐标为(,).

    (3)∵S△ABC=S△ABP,
    ∴ABOC=AB,
    ∴=4,
    当n=4时,4=m2-m-4,
    解得m=,
    ∵mn>0,
    ∴m=,
    ∴P点坐标为(,4)
    当n=-4时,-4=m2-m-4,
    解得:m=1或m=0,
    ∵mn>0,
    ∴m=1或m=0均不符合题意,
    综上:P点坐标为(,4).
    (4)设∠BAC的角平分线交y轴于E,过E作EF⊥AC于F,
    ∵A(-3,0),B(4,0),C(0,-4),
    ∴AB=7,AC=5,OA=3,OC=4,
    ∵AE为∠BAC的角平分线,
    ∴OE=EF,
    又∵AE=AE,
    △AOE≌△FAE,
    ∴AF=OA=3,
    ∴FC=5-3=2,
    ∴EF2+FC2=CE2,即OE2+22=(4-OE)2,
    解得:OE=,
    ∵点E在y轴负半轴,
    ∴E点坐标为(0,-),
    设直线AE的解析式为y=kx+b,

    解得:
    ∴直线AE的解析式为y=,
    ①当∠ABM1=90°时,
    ∵ANMB是矩形,
    ∴M1N1=AB=7,AN1=BM,M1B⊥x轴,AN1⊥x轴,
    ∴x=4时,y=,
    ∴点N1坐标为(-3,).
    ②当∠AM2B=90°时,过N2作N2G⊥x轴,
    ∵AM2BN2是矩形,
    ∴∠N2BA=∠BAE,
    ∵OA=3,OE=,
    ∴AE=,
    ∴sin∠BAE==,cos∠BAE==,
    ∴sin∠N2BA =,cos∠N2BA=
    ∴BN2=ABcos∠N2BA=,
    ∴N2G=BN2sin∠N2BA=,BG=BN2cos∠N2BA=,
    ∴OB-BG=-,
    ∴点N2坐标为(-,).

    综上所述:点N的坐标为N1(-3,),N2(-,).
    【点睛】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求抛物线的解析式,二次函数的性质,勾股定理,矩形的性质,三角函数的应用,综合性较强,注意分类思想的运用是解题关键.
    8.(河南省濮阳市县区2019-2020学年九年级上学期期末数学试题)如图,抛物线与x轴交于点,点,与y轴交于点C,且过点.点P、Q是抛物线上的动点.
    (1)求抛物线的解析式;
    (2)当点P在直线OD下方时,求面积的最大值.
    (3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标.

    【答案】(1)抛物线的表达式为:;(2)有最大值,当时,其最大值为;(3)点或.
    【解析】
    【分析】
    (1)函数的表达式为:y=a(x+1)(x-3),将点D坐标代入上式,即可求解;
    (2),即可求解;
    (3)分∠ACB=∠BOQ、∠BAC=∠BOQ,两种情况分别求解,通过角的关系,确定直线OQ倾斜角,进而求解.
    【详解】解:(1)函数的表达式为:,将点D坐标代入上式并解得:,
    故抛物线的表达式为:…①;
    (2)设直线PD与y轴交于点G,设点,

    将点P、D的坐标代入一次函数表达式:并解得:
    直线PD的表达式为:,则,

    ∵,故有最大值,当时,其最大值为;
    (3)∵,∴,
    ∵,故与相似时,分为两种情况:
    ①当时,
    ,,,
    过点A作AH⊥BC与点H,

    ,解得:,
    则,则,
    则直线OQ的表达式为:…②,
    联立①②并解得:(舍去负值),
    故点
    ②时,

    则直线OQ的表达式为:…③,
    联立①③并解得:,
    故点;
    综上,点或.
    9.(湖北省襄阳阳光学校2019-2020学年九年级下册网络教学中考模拟数学试题)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.
    (1)求抛物线的解析式;
    (2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
    (3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.

    【解析】(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.
    (2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=﹣x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.
    (3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.
    【详解】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,
    ∴y=2x﹣6,
    令y=0,解得:x=3,
    ∴B的坐标是(3,0).
    ∵A为顶点,
    ∴设抛物线的解析为y=a(x﹣1)2﹣4,
    把B(3,0)代入得:4a﹣4=0,
    解得a=1,
    ∴y=(x﹣1)2﹣4=x2﹣2x﹣3.
    (2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,
    此时PO平分第二象限,即PO的解析式为y=﹣x.
    设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍),
    ∴P(,).
    (3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,
    ∴=,即=,∴DQ1=,
    ∴OQ1=,即Q1(0,);
    ②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,
    ∴=,即=,
    ∴OQ2=,即Q2(0,);
    ③如图,当∠AQ3B=90°时,作AE⊥y轴于E,
    则△BOQ3∽△Q3EA,
    ∴=,即=,
    ∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,
    即Q3(0,﹣1),Q4(0,﹣3).
    综上,Q点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).

    相关试卷

    【全套】中考数学复习专题(知识梳理+含答案)预测10 几何图形的探究:

    这是一份【全套】中考数学复习专题(知识梳理+含答案)预测10 几何图形的探究,共42页。试卷主要包含了综合与实践等内容,欢迎下载使用。

    【全套】中考数学复习专题(知识梳理+含答案)预测05 函数的综合:

    这是一份【全套】中考数学复习专题(知识梳理+含答案)预测05 函数的综合,共23页。试卷主要包含了两点,与y轴相交于点C等内容,欢迎下载使用。

    【全套】中考数学复习专题(知识梳理+含答案)预测04 圆的综合(解析版):

    这是一份【全套】中考数学复习专题(知识梳理+含答案)预测04 圆的综合(解析版),共35页。试卷主要包含了【答案】见解析; 等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map