高中数学高考课后限时集训34 等差数列及其前n项和 作业
展开这是一份高中数学高考课后限时集训34 等差数列及其前n项和 作业,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
等差数列及其前n项和
建议用时:45分钟
一、选择题
1.若{an}为等差数列,且a7-2a4=-1,a3=0,则公差d等于( )
A.-2 B.-
C. D.2
B [由于a7-2a4=a1+6d-2(a1+3d)=-a1=-1,则a1=1.又由a3=a1+2d=1+2d=0,解得d=-.故选B.]
2.(2019·峨眉山模拟)在等差数列{an}中,a3,a9是方程x2+24x+12=0的两根,则数列{an}的前11项和等于( )
A.66 B.132
C.-66 D.-132
D [因为a3,a9是方程x2+24x+12=0的两根,所以a3+a9=-24,
又a3+a9=-24=2a6,所以a6=-12,
S11===-132,故选D.]
3.数列{an}满足2an=an-1+an+1(n≥2),且a2+a4+a6=12,则a3+a4+a5=( )
A.9 B.10
C.11 D.12
D [由2an=an-1+an+1(n≥2)可知数列{an}为等差数列,∴a2+a4+a6=a3+a4+a5=12.故选D.]
4.公差不为0的等差数列{an}的前n项和为Sn,若a6=3a4,且S10=λa4,则λ的值为( )
A.15 B.21
C.23 D.25
D [由题意得a1+5d=3(a1+3d),∴a1=-2d.
∴λ====25,故选D.]
5.等差数列{an}中,已知|a6|=|a11|,且公差d>0,则其前n项和取最小值时的n的值为( )
A.6 B.7
C.8 D.9
C [∵|a6|=|a11|且公差d>0,∴a6=-a11.
∴a6+a11=a8+a9=0,且a8<0,a9>0
∴a1<a2<…<a8<0<a9<a10<…
∴使Sn取最小值的n的值为8.故选C.]
二、填空题
6.(2019·全国卷Ⅲ)记Sn为等差数列{an}的前n项和,若a1≠0,a2=3a1,则=____________.
4 [设等差数列{an}的公差为d,由a2=3a1,即a1+d=3a1,得2a1=d,所以===4.]
7.(2019·江苏高考)已知数列{an}(n∈N*)是等差数列,Sn是其前n项和.若a2a5+a8=0,S9=27,则S8的值是________.
16 [由题意可得:
解得
则S8=8a1+d=-40+28×2=16.]
8.已知数列{an}是等差数列,前n项和为Sn,满足a1+5a3=S8,给出下列结论:
①a10=0;②S10最小;③S7=S12;④S20=0.其中一定正确的结论是________.(填序号)
①③ [a1+5(a1+2d)=8a1+28d,
所以a1=-9d,
a10=a1+9d=0,故①正确;
由于d的符号未知,所以S10不一定最大,故②错误;
S7=7a1+21d=-42d,S12=12a1+66d=-42d,
所以S7=S12,故③正确;
S20=20a1+190d=10d,不一定为0,故④错误.
所以正确的是①③.]
三、解答题
9.已知数列{an}满足(an+1-1)(an-1)=3(an-an+1),a1=2,令bn=.
(1)证明:数列{bn}是等差数列;
(2)求数列{an}的通项公式.
[解] (1)证明:∵-
==,
∴bn+1-bn=,
∴{bn}是等差数列.
(2)由(1)及b1===1.
知bn=n+,
∴an-1=,∴an=.
10.(2019·全国卷Ⅰ)记Sn为等差数列{an}的前n项和,已知S9=-a5.
(1)若a3=4,求{an}的通项公式;
(2)若a1>0,求使得Sn≥an的n的取值范围.
[解] (1)设{an}的公差为d.
由S9=-a5得a1+4d=0.
由a3=4得a1+2d=4.
于是a1=8,d=-2.
因此{an}的通项公式为an=10-2n.
(2)由(1)得a1=-4d,故an=(n-5)d,
Sn=.
由a1>0知d<0,故Sn≥an等价于n2-11n+10≤0,解得1≤n≤10,所以n的取值范围是{n|1≤n≤10,n∈N*}.
1.(2019·开福区校级模拟)《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则芒种日影长为( )
A.1.5尺 B.2.5尺
C.3.5尺 D.4.5尺
B [设此等差数列{an}的公差为d,
则a1+a4+a7=3a1+9d=31.5,9a1+d=85.5,
解得d=-1,a1=13.5.则a12=13.5-11=2.5.故选B.]
2.(2019·深圳模拟)若{an}是等差数列,首项a1>0.a2 018+a2 019>0,a2 018·a2 019<0,则使前n项和Sn>0成立的最大正整数n是( )
A.2 018 B.2 019
C.4 036 D.4 037
C [{an}是等差数列,首项a1>0.a2 018+a2 019>0,a2 018·a2 019<0,所以{an}是递减的等差数列,且a2 018>0,a2 019<0,因为a2 018+a2 019=a1+a4 036>0,
2a2 019=a1+a4 037>0,
∴S4 036=×4 036>0,S4 037=×4 037<0,
所以使前n项和Sn>0成立的最大正整数n是4 036.故选C.]
3.设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=________.
- [∵an+1=Sn+1-Sn,
∴Sn+1-Sn=Sn+1Sn,
又由a1=-1,知Sn≠0,
∴-=1,
∴是等差数列,且公差为-1,而==-1,
∴=-1+(n-1)×(-1)=-n,
∴Sn=-.]
4.已知一次函数f(x)=x+8-2n.
(1)设函数y=f(x)的图象与y轴交点的纵坐标构成数列{an},求证:数列{an}是等差数列;
(2)设函数y=f(x)的图象与y轴的交点到x轴的距离构成数列{bn},求数列{bn}的前n项和Sn.
[解] (1)证明:由题意得an=8-2n,
因为an+1-an=8-2(n+1)-8+2n=-2,且a1=8-2=6,
所以数列{an}是首项为6,公差为-2的等差数列.
(2)由题意得bn=|8-2n|.
由b1=6,b2=4,b3=2,b4=0,b5=2,
可知此数列前4项是首项为6,公差为-2的等差数列,从第5项起,是首项为2,公差为2的等差数列.
所以当n≤4时,Sn=6n+×(-2)=-n2+7n,
当n≥5时,Sn=S4+(n-4)×2+×2=n2-7n+24.
故Sn=
1.在数列{an}中,a1=2,其前n项和为Sn.若点在直线y=2x-1上,则a9等于( )
A.1 290 B.1 280
C.1 281 D.1 821
C [由已知可得-1=2,
又-1=a1-1=1,
所以数列是首项为1,公比为2的等比数列,
所以-1=2n-1,得Sn=n(1+2n-1),
当n≥2时,an=Sn-Sn-1=(n+1)2n-2+1,
故 a9=10×128+1=1 281.]
2.等差数列{an}中,a3+a4=4,a5+a7=6.
(1)求{an}的通项公式;
(2)设bn=[an],求数列{bn}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.
[解] (1)设数列{an}的公差为d,由题意有
2a1+5d=4,a1+5d=3.
解得a1=1,d=.
所以{an}的通项公式为an=.
(2)由(1)知,bn=.
当n=1,2,3时,1≤<2,bn=1;
当n=4,5时,2≤<3,bn=2;
当n=6,7,8时,3≤<4,bn=3;
当n=9,10时,4≤<5,bn=4.
所以数列{bn}的前10项和为1×3+2×2+3×3+4×2=24.
相关试卷
这是一份高中数学高考课后限时集训70 n次独立重复试验与二项分布 作业,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学高考课后限时集训33 等差数列及其前n项和 作业,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学高考第34讲 等差数列及其前n项和(讲)(学生版),共7页。试卷主要包含了等差数列的有关概念,等差数列的有关公式等内容,欢迎下载使用。