高中数学高考第3讲 函数的奇偶性与周期性
展开
这是一份高中数学高考第3讲 函数的奇偶性与周期性,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
第3讲 函数的奇偶性与周期性一、选择题1.(2017·肇庆三模)在函数y=xcos x,y=ex+x2,y=lg,y=xsin x中,偶函数的个数是( )A.3 B.2 C.1 D.0解析 y=xcos x为奇函数,y=ex+x2为非奇非偶函数,y=lg与y=xsin x为偶函数.答案 B2.(2015·湖南卷)设函数f(x)=ln(1+x)-ln(1-x),则f(x)是( )A.奇函数,且在(0,1)内是增函数B.奇函数,且在(0,1)内是减函数C.偶函数,且在(0,1)内是增函数D.偶函数,且在(0,1)内是减函数解析 易知f(x)的定义域为(-1,1),且f(-x)=ln(1-x)-ln(1+x)=-f(x),则y=f(x)为奇函数,又y=ln(1+x)与y=-ln(1-x)在(0,1)上是增函数,所以f(x)=ln(1+x)-ln(1-x)在(0,1)上是增函数.答案 A3.(2017·赣中南五校联考)已知y=f(x)是奇函数,当x<0时,f(x)=x2+ax,且f(3)=6,则a的值为( )A.5 B.1 C.-1 D.-3解析 ∵y=f(x)是奇函数,且f(3)=6.∴f(-3)=-6,则9-3a=-6,解得a=5.答案 A4.已知函数f(x)=x,若f(x1)<f(x2),则( )A.x1>x2 B.x1+x2=0C.x1<x2 D.x<x解析 ∵f(-x)=-x=f(x).∴f(x)在R上为偶函数,f′(x)=ex-+x,∴x>0时,f′(x)>0,∴f(x)在[0,+∞)上为增函数,由f(x1)<f(x2),得f(|x1|)<f(|x2|),∴|x1|<|x2|,∴x<x.答案 D5.(2017·西安一模)奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=2,则f(4)+f(5)的值为( )A.2 B.1 C.-1 D.-2解析 ∵f(x+1)为偶函数,∴f(-x+1)=f(x+1),则f(-x)=f(x+2),又y=f(x)为奇函数,则f(-x)=-f(x)=f(x+2),且f(0)=0.从而f(x+4)=-f(x+2)=f(x),y=f(x)的周期为4.∴f(4)+f(5)=f(0)+f(1)=0+2=2.答案 A二、填空题6.若f(x)=ln(e3x+1)+ax是偶函数,则a=________.解析 由于f(-x)=f(x),∴ln(e-3x+1)-ax=ln(e3x+1)+ax,化简得2ax+3x=0(x∈R),则2a+3=0,∴a=-.答案 -7.(2017·合肥质检)若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=则f+f=________.解析 由于函数f(x)是周期为4的奇函数,所以f+f=f+f=-f-f=-+sin =.答案 8.定义在R上的奇函数y=f(x)在(0,+∞)上递增,且f=0,则满足f(x)>0的x的集合为________.解析 由奇函数y=f(x)在(0,+∞)上递增,且f=0,得函数y=f(x)在(-∞,0)上递增,且f=0,∴f(x)>0时,x>或-<x<0.答案 三、解答题9.设f(x)是定义域为R的周期函数,最小正周期为2,且f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.(1)判定f(x)的奇偶性;(2)试求出函数f(x)在区间[-1,2]上的表达式.解 (1)∵f(1+x)=f(1-x),∴f(-x)=f(2+x).又f(x+2)=f(x),∴f(-x)=f(x).又f(x)的定义域为R,∴f(x)是偶函数.(2)当x∈[0,1]时,-x∈[-1,0],则f(x)=f(-x)=x;进而当1≤x≤2时,-1≤x-2≤0,f(x)=f(x-2)=-(x-2)=-x+2.故f(x)=10.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.解 (1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x).于是x<0时,f(x)=x2+2x=x2+mx,所以m=2.(2)要使f(x)在[-1,a-2]上单调递增,结合f(x)的图象知所以1<a≤3,故实数a的取值范围是(1,3].11.(2017·石家庄一模)已知f(x)是定义在R上的以3为周期的偶函数,若f(1)<1,f(5)=,则实数a的取值范围为( )A.(-1,4) B.(-2,0)C.(-1,0) D.(-1,2)解析 ∵f(x)是定义在R上的周期为3的偶函数,∴f(5)=f(5-6)=f(-1)=f(1),∵f(1)<1,f(5)=,∴<1,即<0,解得-1<a<4.答案 A12.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图象关于x=1对称,且f(0)=2,则f(2 015)+f(2 016)=( )A.0 B.2 C.3 D.4解析 y=f(x-1)的图象关于x=1对称,则函数y=f(x)的图象关于x=0对称,即函数f(x)是偶函数,令x=-1,则f(-1+2)-f(-1)=2f(1),∴f(1)-f(1)=2f(1)=0,即f(1)=0,则f(x+2)-f(x)=2f(1)=0,即f(x+2)=f(x),则函数的周期是2,又f(0)=2,则f(2 015)+f(2 016)=f(1)+f(0)=0+2=2.答案 B13.(2017·东北四市联考)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.解析 因为当0≤x<2时,f(x)=x3-x.又f(x)是R上最小正周期为2的周期函数,且f(0)=0,则f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,∴f(3)=f(5)=f(1)=0,故函数y=f(x)的图象在区间[0,6]上与x轴的交点有7个.答案 714.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积.解 (1)由f(x+2)=-f(x)得,f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),所以f(x)是以4为周期的周期函数,所以f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.(2)由f(x)是奇函数且f(x+2)=-f(x),得f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)=f(1-x).故知函数y=f(x)的图象关于直线x=1对称.又当0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如下图所示.当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S,则S=4S△OAB=4×=4.
相关试卷
这是一份高中数学高考第05讲 函数的奇偶性与周期性(练)解析版,共6页。
这是一份高中数学高考第05讲 函数的奇偶性与周期性(练)原卷版,共3页。
这是一份高中数学高考第05讲 函数的奇偶性与周期性(讲)原卷版,共4页。