年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    高中数学高考第2讲 空间点、直线、平面之间的位置关系 试卷

    立即下载
    加入资料篮
    高中数学高考第2讲 空间点、直线、平面之间的位置关系第1页
    高中数学高考第2讲 空间点、直线、平面之间的位置关系第2页
    高中数学高考第2讲 空间点、直线、平面之间的位置关系第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学高考第2讲 空间点、直线、平面之间的位置关系

    展开

    这是一份高中数学高考第2讲 空间点、直线、平面之间的位置关系,共17页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
    第2讲 空间点、直线、平面之间的位置关系


    一、知识梳理
    1.四个公理
    公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
    公理2:过不在一条直线上的三点,有且只有一个平面.
    公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
    公理4:平行于同一条直线的两条直线互相平行.
    2.空间直线的位置关系
    (1)位置关系的分类

    (2)异面直线所成的角
    ①定义:设a,b是两条异面直线,经过空间中任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
    ②范围:.
    [注意] 两直线垂直有两种情况——异面垂直和相交垂直.
    (3)等角定理
    空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
    3.空间中直线与平面、平面与平面的位置关系
    (1)空间中直线和平面的位置关系
    位置关系
    图形表示
    符号表示
    公共点
    直线a在平面α内

    a⊂α
    有无数个
    公共点
    直线在
    平面外
    直线a与平面α平行

    a∥α
    没有公共点
    直线在
    平面外
    直线a与平面α斜交

    a∩α=A
    有且只有一个公共点
    直线a与平面α垂直

    a⊥α
    (2)空间中两个平面的位置关系
    位置关系
    图形表示
    符号表示
    公共点
    两平面平行

    α∥β
    没有公共点
    两平面相交
    斜交

    α∩β=l
    有一条公共直线
    垂直

    α⊥β且α∩β=a
    常用结论
    1.公理2的三个推论
    推论1:经过一条直线和这条直线外一点有且只有一个平面;
    推论2:经过两条相交直线有且只有一个平面;
    推论3:经过两条平行直线有且只有一个平面.
    2.异面直线判定的一个定理
    过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.
    二、教材衍化
    1.若直线a不平行于平面α,且a⊄α,则下列结论成立的是(  )
    A.α内的所有直线与a异面
    B.α内不存在与a平行的直线
    C.α内存在唯一的直线与a平行
    D.α内的直线与a都相交
    解析:选B.若直线a不平行于平面α,且a⊄α,则线面相交,A选项不正确,α内存在直线与a相交;B选项正确,α内的直线与直线a的位置关系是相交或者异面,不可能平行;C选项不正确,因为α内的直线与直线a的位置关系是相交或者异面,不可能平行;D选项不正确,α内只有过直线a与平面的交点的直线与a相交.故选B.
    2.如图所示,在正方体ABCD­A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为________.

    解析:连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求,又B1D1=B1C=D1C,所以∠D1B1C=60°.
    答案:60°
    3.如图,在三棱锥A­BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则

    (1)当AC,BD满足条件________时,四边形EFGH为菱形;
    (2)当AC,BD满足条件________时,四边形EFGH为正方形.
    解析:(1)因为四边形EFGH为菱形,
    所以EF=EH,故AC=BD.
    (2)因为四边形EFGH为正方形,
    所以EF=EH且EF⊥EH,
    因为EFAC,EHBD,
    所以AC=BD且AC⊥BD.
    答案:(1)AC=BD (2)AC=BD且AC⊥BD

    一、思考辨析
    判断正误(正确的打“√”,错误的打“×”)
    (1)若P∈α∩β且l是α,β的交线,则P∈l.(  )
    (2)三点A,B,C确定一个平面.(  )
    (3)若直线a∩b=A,则直线a与b能够确定一个平面.(  )
    (4)若A∈l,B∈l且A∈α,B∈α,则l⊂α.(  )
    (5)分别在两个平面内的两条直线是异面直线.(  )
    答案:(1)√ (2)× (3)√ (4)√ (5)×
    二、易错纠偏
    (1)对异面直线的概念理解有误;
    (2)对等角定理条件认识不清致误;
    (3)对平面的性质掌握不熟练,应用不灵活.
    1.已知a,b是异面直线,直线c平行于直线a,那么c与b(  )
    A.一定是异面直线 B.一定是相交直线
    C.不可能是平行直线 D.不可能是相交直线
    解析:选C.假设c∥b,又因为c∥a,所以a∥b,这与a,b是异面直线矛盾,故c与b不可能平行.
    2.若∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同,则下列结论中正确的是(  )
    A.OB∥O1B1且方向相同 B.OB∥O1B1
    C.OB与O1B1不平行 D.OB与O1B1不一定平行
    解析:选D.两角相等,角的一边平行且方向相同,另一边不一定平行,故选D.
    3.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.

    解析:EF与正方体左、右两侧面均平行.所以与EF相交的平面有4个.
    答案:4

    考点一 平面的基本性质(基础型)
    了解可以作为推理依据的公理和定理.
    核心素养:逻辑推理
    如图所示,在正方体ABCD­A1B1C1D1中,E,F分别是AB和AA1的中点.求证:E,C,D1,F四点共面.

    【证明】 如图所示,连接CD1,EF,A1B,

    因为E,F分别是AB和AA1的中点,
    所以EF∥A1B且EF=A1B.
    又因为A1D1BC,
    所以四边形A1BCD1是平行四边形,
    所以A1B∥CD1,所以EF∥CD1,
    所以EF与CD1确定一个平面α,
    所以E,F,C,D1∈α,
    即E,C,D1,F四点共面.
    【迁移探究】 (变问法)若本例条件不变,如何证明“CE,D1F,DA交于一点”?

    证明:如图,由本例知EF∥CD1,且EF=CD1,
    所以四边形CD1FE是梯形,
    所以CE与D1F必相交,设交点为P,
    则P∈CE,且P∈D1F,
    又CE⊂平面ABCD,
    且D1F⊂平面A1ADD1,
    所以P∈平面ABCD,
    且P∈平面A1ADD1.
    又平面ABCD∩平面A1ADD1=AD,所以P∈AD,
    所以CE,D1F,DA三线交于一点.

    共面、共线、共点问题的证明方法
    (1)证明点或线共面,①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.
    (2)证明点共线,①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定的直线上.
    (3)证明线共点,先证其中两条直线交于一点,再证其他直线经过该点.
    [提醒] 点共线、线共点等都是应用公理3,证明点为两平面的公共点,即证明点在交线上. 

    1.(多选)(2021·预测)用一个平面去截正方体,关于截面的形状,下列判断正确的是(  )
    A.直角三角形     B.正五边形
    C.正六边形 D.梯形
    解析:选CD.画出截面图形如图:

    可以画出三角形但不是直角三角形,故A错误;如图1经过正方体的一个顶点去切就可得到五边形,但此时不可能是正五边形,故B错误;正方体有六个面,如图2用平面去截正方体时最多与六个面相交得六边形,且可以画出正六边形,故C正确;可以画出梯形但不是直角梯形,故D正确.
    2.如图,空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.

    (1)求证:E,F,G,H四点共面;
    (2)设EG与FH交于点P,求证:P,A,C三点共线.
    证明:(1)因为E,F分别为AB,AD的中点,所以EF∥BD.
    在△BCD中,==,所以GH∥BD,所以EF∥GH.
    所以E,F,G,H四点共面.
    (2)因为EG∩FH=P,P∈EG,EG⊂平面ABC,
    所以P∈平面ABC.同理P∈平面ADC.
    所以P为平面ABC与平面ADC的公共点.
    又平面ABC∩平面ADC=AC,
    所以P∈AC,所以P,A,C三点共线.
    考点二 空间两直线的位置关系(基础型)
    认识和理解空间点、线、面的位置关系.
    核心素养:逻辑推理、直观想象
    (2019·高考全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则(  )

    A.BM=EN,且直线BM,EN是相交直线
    B.BM≠EN,且直线BM,EN是相交直线
    C.BM=EN,且直线BM,EN是异面直线
    D.BM≠EN,且直线BM,EN是异面直线
    【解析】 如图,取CD的中点F,连接EF,EB,BD,FN,因为△CDE是正三角形,所以EF⊥CD.设CD=2,则EF=.因为点N是正方形ABCD的中心,所以BD=2,NF=1,BC⊥CD.因为平面ECD⊥平面ABCD,所以EF⊥平面ABCD,BC⊥平面ECD,所以EF⊥NF,BC⊥EC,所以在Rt△EFN中,EN=2,在Rt△BCE中,EB=2,所以在等腰三角形BDE中,BM=,所以BM≠EN.易知BM,EN是相交直线.故选B.

    【答案】 B

     

    1.已知空间三条直线l,m,n,若l与m异面,且l与n异面,则(  )
    A.m与n异面
    B.m与n相交
    C.m与n平行
    D.m与n异面、相交、平行均有可能
    解析:选D.在如图所示的长方体中,m,n1与l都异面,但是m∥n1,所以A,B错误;m,n2与l都异面,且m,n2也异面,所以C错误.故选D.

    2.如图,正方体ABCD­A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:

    ①直线AM与CC1是相交直线;
    ②直线AM与BN是平行直线;
    ③直线BN与MB1是异面直线;
    ④直线AM与DD1是异面直线.
    其中正确的结论是________(注:把你认为正确的结论的序号都填上).
    解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,故①②错误.
    答案:③④
    考点三 异面直线所成的角(基础型)
    求异面直线所成的角关键是转化为平面角,常利用平移法解决.
    (1)(2020·成都第一次诊断性检测)在各棱长均相等的直三棱柱ABC­A1B1C1中,已知M是棱BB1的中点,N是棱AC的中点,则异面直线A1M与BN所成角的正切值为(  )
    A. B.1
    C. D.
    (2)四面体ABCD中,E,F分别是AB,CD的中点.若BD,AC所成的角为60°,且BD=AC=1,则EF的长为________.
    【解析】 (1)如图,取AA1的中点P,连接PN,PB,则由直三棱柱的性质可知A1M∥PB,则∠PBN为异面直线A1M与BN所成的角(或其补角).设三棱柱的棱长为2,则PN=,PB=,BN=,所以PN2+BN2=PB2,所以∠PNB=90°,在Rt△PBN中,tan∠PBN===,故选C.

    (2)如图,取BC的中点O,连接OE,OF,

    因为OE∥AC,OF∥BD,
    所以OE与OF所成的锐角(或直角)即为AC与BD所成的角,而AC,BD所成角为60°,所以∠EOF=60°或∠EOF=120°.当∠EOF=60°时,EF=OE=OF=.
    当∠EOF=120°时,取EF的中点M,则OM⊥EF,
    EF=2EM=2×=.
    【答案】 (1)C (2)或

    平移法求异面直线所成角的步骤
    具体步骤如下:
     

    1. (2020·广东省七校联考)如图,在正方体ABCD­A1B1C1D1中,异面直线AC与A1B所成的角为(  )

    A.30° B.45°
    C.60° D.90°
    解析:选C.如图,连接CD1,AD1则A1B∥CD1,所以∠ACD1是异面直线AC与A1B所成的角或其补角.易知△ACD1是等边三角形.所以∠ACD1=60°,所以异面直线AC与A1B所成的角为60°.故选C.

    2.(2020·济南市学习质量评估)如图,在正方形ABCD中,点E,F分别为BC,AD的中点,将四边形CDFE沿EF翻折,使得平面CDFE⊥平面ABEF,则异面直线BD与CF所成角的余弦值为________.

    解析:如图,连接DE交FC于点O,

    取BE的中点G,连接OG,CG,
    则OG∥BD且OG=BD,
    所以∠COG为异面直线BD与CF所成的角或其补角.
    设正方形ABCD的边长为2,
    则CE=BE=1,CF=DE==,
    所以CO=CF=.
    易得BE⊥平面CDFE,所以BE⊥DE,
    所以BD==,
    所以OG=BD=.
    易知CE⊥平面ABEF,所以CE⊥BE,
    又GE=BE=,所以CG==.
    在△COG中,由余弦定理得,
    cos∠COG===,所以异面直线BD与CF所成角的余弦值为.
    答案:

    [基础题组练]
    1.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是(  )
    A.相交或平行 B.相交或异面
    C.平行或异面 D.相交、平行或异面
    解析:选D.依题意,直线b和c的位置关系可能是相交、平行或异面.故选D.
    2.(多选)下列命题正确的是(  )
    A.梯形一定是平面图形
    B.若两条直线和第三条直线所成的角相等,则这两条直线平行
    C.两两相交的三条直线最多可以确定三个平面
    D.若两个平面有三个公共点,则这两个平面重合
    解析:选AC.对于A,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,故A正确;对于B,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,故B错误;对于C,两两相交的三条直线最多可以确定三个平面,故C正确;对于D,若两个平面有三个公共点,则这两个平面相交或重合,故D错误.
    3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的(  )
    A.充分不必要条件 B.必要不充分条件
    C.充要条件 D.既不充分也不必要条件
    解析:选A.若直线a,b相交,设交点为P,则P∈a,P∈b.又a⊂α,b⊂β,所以P∈α,P∈β,故α,β相交.反之,若α,β相交,则a,b可能相交,也可能异面或平行.故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.
    4. (多选)如图,在长方体ABCD­A1B1C1D1中,O是DB的中点,直线A1C交平面C1BD于点M,则下列结论正确的是(  )

    A.C1,M,O三点共线
    B.C1,M,O,C四点共面
    C.C1,O,A1,M四点共面
    D.D1,D,O,M四点共面
    解析:选ABC.连接A1C1,AC,则AC∩BD=O,又A1C∩平面C1BD=M,所以三点C1,M,O在平面C1BD与平面ACC1A1的交线上,所以C1,M,O三点共线,所以选项A,B,C均正确,选项D错误.

    5. (2020·内蒙古集宁一中四模)如图,在四面体ABCD中,E,F分别是AC,BD的中点,若CD=2AB=4,EF⊥BA,则EF与CD所成的角为(  )

    A.30° B.45°
    C.60° D.90°
    解析:选A.取CB的中点G,连接EG,FG.则EG∥AB,FG∥CD.所以EF与CD所成的角为∠EFG(或其补角),因为EF⊥AB,所以EF⊥EG.

    EG=AB=1,FG=CD=2,
    所以在Rt△EFG中,sin∠EFG=,所以EF与CD所成的角为30°.故选A.
    6.已知棱长为a的正方体ABCD­A′B′C′D′中,M,N分别为CD,AD的中点,则MN与A′C′的位置关系是_______________________________.
    解析:如图,由题意可知MN∥AC.又因为AC∥A′C′,所以MN∥A′C′.

    答案:平行
    7.给出下列四个命题:
    ①平面外的一条直线与这个平面最多有一个公共点;
    ②若平面α内的一条直线a与平面β内的一条直线b相交,则α与β相交;
    ③若一条直线和两条平行线都相交,则这三条直线共面;
    ④若三条直线两两相交,则这三条直线共面.
    其中真命题的序号是________.
    解析:①正确,因为直线在平面外即直线与平面相交或直线平行于平面,所以最多有一个公共点.②正确,a,b有交点,则两平面有公共点,则两平面相交.③正确,两平行直线可确定一个平面,又直线与两平行直线的两交点在这两平行直线上,所以过这两交点的直线也在平面内,即三线共面.④错误,这三条直线可以交于同一点,但不在同一平面内.
    答案:①②③
    8.如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________.

    解析:如图,将原图补成正方体ABCD­QGHP,连接AG,GP,则GP∥BD,所以∠APG为异面直线AP与BD所成的角,在△AGP中,AG=GP=AP,所以∠APG=.

    答案:
    9.如图,在正方体ABCD­A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1,H,O三点共线.

    证明:如图,连接BD,B1D1,则BD∩AC=O,

    因为BB1DD1,
    所以四边形BB1D1D为平行四边形,
    又H∈B1D,
    B1D⊂平面BB1D1D,
    则H∈平面BB1D1D,
    因为平面ACD1∩平面BB1D1D=OD1,
    所以H∈OD1.即D1,H,O三点共线.
    10.如图,在三棱锥P­ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=,AB=2,AC=2,PA=2.求:

    (1)三棱锥P­ABC的体积;
    (2)异面直线BC与AD所成角的余弦值.
    解:(1)S△ABC=×2×2=2,
    三棱锥P­ABC的体积为V=S△ABC·PA=×2×2=.
    (2)如图,取PB的中点E,连接DE,AE,则ED∥BC,所以∠ADE(或其补角)是异面直线BC与AD所成的角.

    在△ADE中,DE=2,AE=,AD=2,cos∠ADE==.
    故异面直线BC与AD所成角的余弦值为.
    [综合题组练]
    1.(创新型)如图,已知线段AB垂直于定圆所在的平面,B,C是圆上的两点,H是点B在AC上的射影,当点C运动时,点H运动的轨迹(  )

    A.是圆      B.是椭圆
    C.是抛物线 D.不是平面图形
    解析:选A.如图,过点B作圆的直径BD,连接CD,AD,则BC⊥CD,再过点B作BE⊥AD于点E,连接HE,因为AB⊥平面BCD,所以AB⊥CD.又BC⊥CD,且AB∩BC=B,所以CD⊥平面ABC,所以CD⊥BH.

    又BH⊥AC,且AC∩CD=C,所以BH⊥平面ACD,所以BH⊥AD,BH⊥HE.
    又注意到过点B与直线AD垂直的直线都在同一个平面内,于是结合点B,E位置,可知,当点C运动时,点H运动的轨迹是以BE为直径的圆.故选A.
    2. (多选)如图,在边长为1的正方形ABCD中,点E,F分别为边BC,AD的中点,将△ABF沿BF所在的直线进行翻折,将△CDE沿DE所在的直线进行翻折,在翻折的过程中,下列说法正确的是(  )

    A.无论旋转到什么位置,A,C两点都不可能重合
    B.存在某个位置,使得直线AF与直线CE所成的角为60°
    C.存在某个位置,使得直线AF与直线CE所成的角为90°
    D.存在某个位置,使得直线AB与直线CD所成的角为90°
    解析:选ABC.在A中,A与C恒不重合,故A正确;在B中,存在某个位置,使得直线AF与直线CE所成的角为60°,故B正确;在C中,存在某个位置,使得直线AF与直线CE所成的角为90°,故C正确;在D中,直线AB与直线CD不可能垂直,故D不成立.故选ABC.
    3.一正方体的平面展开图如图所示,在这个正方体中,有下列四个命题:

    ①AF⊥GC;②BD与GC成异面直线且夹角为60°;③BD∥MN;④BG与平面ABCD所成的角为45°.
    其中正确的是________(填序号).
    解析:将平面展开图还原成正方体(如图所示).

    对于①,由图形知AF与GC异面垂直,故①正确;
    对于②,BD与GC显然成异面直线.如图,连接EB,ED,则BE∥GC,所以∠EBD即为异面直线BD与GC所成的角(或其补角).在等边△BDE中,∠EBD=60°,
    所以异面直线BD与GC所成的角为60°,故②正确;
    对于③,BD与MN为异面垂直,故③错误;
    对于④,由题意得,GD⊥平面ABCD,所以∠GBD是BG与平面ABCD所成的角.但在Rt△BDG中,∠GBD不等于45°,故④错误.综上可得①②正确.
    答案:①②
    4.(2020·河南安阳调研四)在正方体ABCD­A1B1C1D1中,点E∈平面AA1B1B,点F是线段AA1的中点,若D1E⊥CF,则当△EBC的面积取得最小值时,=________.
    解析:如图所示,连接B1D1,取AB的中点G,连接D1G,B1G.由题意得CF⊥平面B1D1G,

    所以当点E在直线B1G上时,D1E⊥CF,
    设BC=a,则S△EBC=EB·BC=EB·a,
    当△EBC的面积取最小值时,线段EB的长度为点B到直线B1G的距离,所以线段EB长度的最小值为,所以==.
    答案:
    5.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.

    (1)求证:直线EF与BD是异面直线;
    (2)若AC⊥BD,AC=BD,求EF与BD所成的角.
    解:(1)证明:假设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A,B,C,D在同一平面内,这与A是△BCD所在平面外的一点相矛盾.故直线EF与BD是异面直线.
    (2)取CD的中点G,连接EG,FG,则AC∥FG,EG∥BD,所以相交直线EF与EG所成的角,即为异面直线EF与BD所成的角.

    又因为AC⊥BD,则FG⊥EG.
    在Rt△EGF中,由EG=FG=AC,
    求得∠FEG=45°,即异面直线EF与BD所成的角为45°.
    6. (综合型)如图,E,F,G,H分别是空间四边形ABCD各边上的点,且AE∶EB=AH∶HD=m,CF∶FB=CG∶GD=n.

    (1)证明:E,F,G,H四点共面;
    (2)m,n满足什么条件时,四边形EFGH是平行四边形?
    (3)在(2)的条件下,若AC⊥BD,试证明:EG=FH.
    解:(1)证明:因为AE∶EB=AH∶HD,所以EH∥BD.
    又CF∶FB=CG∶GD,
    所以FG∥BD.所以EH∥FG.
    所以E,F,G,H四点共面.
    (2)当EH∥FG,且EH=FG时,四边形EFGH为平行四边形.
    因为==,所以EH=BD.
    同理可得FG=BD,由EH=FG,得m=n.
    故当m=n时,四边形EFGH为平行四边形.
    (3)证明:当m=n时,AE∶EB=CF∶FB,
    所以EF∥AC,
    又EH∥BD,
    所以∠FEH是AC与BD所成的角(或其补角),
    因为AC⊥BD,所以∠FEH=90°,
    从而平行四边形EFGH为矩形,所以EG=FH.

    相关试卷

    高中数学高考第39讲 空间点、直线、平面之间的位置关系(讲)(学生版):

    这是一份高中数学高考第39讲 空间点、直线、平面之间的位置关系(讲)(学生版),共8页。试卷主要包含了四个公理,空间直线的位置关系等内容,欢迎下载使用。

    高中数学高考第39讲 空间点、直线、平面之间的位置关系(讲)(教师版):

    这是一份高中数学高考第39讲 空间点、直线、平面之间的位置关系(讲)(教师版),共15页。试卷主要包含了四个公理,空间直线的位置关系等内容,欢迎下载使用。

    高中数学高考第39讲 空间点、直线、平面之间的位置关系(达标检测)(学生版):

    这是一份高中数学高考第39讲 空间点、直线、平面之间的位置关系(达标检测)(学生版),共8页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map