年终活动
搜索
    上传资料 赚现金

    高中数学高考板块2 核心考点突破拿高分 专题2 第1讲 数列、等差数列与等比数列(小题)(1)课件PPT

    立即下载
    加入资料篮
    高中数学高考板块2 核心考点突破拿高分 专题2 第1讲 数列、等差数列与等比数列(小题)(1)课件PPT第1页
    高中数学高考板块2 核心考点突破拿高分 专题2 第1讲 数列、等差数列与等比数列(小题)(1)课件PPT第2页
    高中数学高考板块2 核心考点突破拿高分 专题2 第1讲 数列、等差数列与等比数列(小题)(1)课件PPT第3页
    高中数学高考板块2 核心考点突破拿高分 专题2 第1讲 数列、等差数列与等比数列(小题)(1)课件PPT第4页
    高中数学高考板块2 核心考点突破拿高分 专题2 第1讲 数列、等差数列与等比数列(小题)(1)课件PPT第5页
    高中数学高考板块2 核心考点突破拿高分 专题2 第1讲 数列、等差数列与等比数列(小题)(1)课件PPT第6页
    高中数学高考板块2 核心考点突破拿高分 专题2 第1讲 数列、等差数列与等比数列(小题)(1)课件PPT第7页
    高中数学高考板块2 核心考点突破拿高分 专题2 第1讲 数列、等差数列与等比数列(小题)(1)课件PPT第8页
    还剩40页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学高考板块2 核心考点突破拿高分 专题2 第1讲 数列、等差数列与等比数列(小题)(1)课件PPT

    展开

    这是一份高中数学高考板块2 核心考点突破拿高分 专题2 第1讲 数列、等差数列与等比数列(小题)(1)课件PPT,共48页。PPT课件主要包含了内容索引,热点分类突破,真题押题精练,押题预测,真题体验等内容,欢迎下载使用。
    NEIRONGSUOYIN
    热点一 等差数列、等比数列的基本运算
    热点二 等差数列、等比数列的性质
    热点三 等差数列、等比数列的综合问题
    热点四 数列的递推关系
    1.等差数列、等比数列的基本公式(n∈N*)等差数列的通项公式:an=a1+(n-1)d;等比数列的通项公式:an=a1·qn-1.
    2.等差数列、等比数列问题的求解策略(1)抓住基本量,首项a1、公差d或公比q;(2)熟悉一些结构特征,如前n项和为Sn=an2+bn(a,b是常数)的形式的数列为等差数列,通项公式为an=p·qn-1(p,q≠0)的形式的数列为等比数列;(3)由于等比数列的通项公式、前n项和公式中变量n在指数位置,所以常用两式相除(即比值的方式)进行相关计算.
    例1 (1)(2019·柳州模拟)已知点(n,an)在函数f(x)=2x-1的图象上(n∈N*).数列{an}的前n项和为Sn,设bn= 数列{bn}的前n项和为Tn.则Tn的最小值为______.
    则bn= =2n-12,∴{bn}是首项为-10,公差为2的等差数列,∴由bn≤0,得n≤6.
    解析 ∵点(n,an)在函数y=2x-1的图象上,∴an=2n-1,∴{an}是首项为a1=1,公比q=2的等比数列,
    解析 数列an是正项等比数列且q≠1,由a6=a5+2a4,得q2=q+2,解得q=2(负根舍去).
    跟踪演练1 (1)(2019·上饶重点中学六校联考)已知等差数列{an}的首项a1=2,前n项和为Sn,若S8=S10,则a18等于A.-4 B.-2 C.0 D.2
    解析 设等差数列{an}的公差为d,由S8=S10,得a9+a10=0,所以2a1+17d=0,且a1=2,
    解析 由正项等比数列{an}的前n项和为Sn,
    易知q=1时不成立,所以q≠1.
    解析 因为a1=9,a5=1,
    (3)已知等差数列{an}的前n项和为Sn,a1=9,a5=1,则使得Sn>0成立的n的最大值为____.
    令Sn>0,得00,∴数列{an}为等比数列.
    ∵a4>0,∴a4=8,∴lg2a1+lg2a2+…+lg2a7
    跟踪演练2 (1)(2019·鞍山模拟)等差数列{an}和{bn}的前n项和分别为Sn与Tn,若
    A.2 B.4 C.6 D.8
    解析 设数列{an}的公比为q.∵数列{an}是等比数列,
    (3)已知正项等比数列{an}的前n项和为Sn,且S10=10,S30=130,则S40等于A.-510 或-510 D.30或40
    解析 ∵正项等比数列{an}的前n项和为Sn,∴S10,S20-S10,S30-S20,S40-S30也成等比数列,∴10×(130-S20)=(S20-10)2,解得S20=40或S20=-30(舍),故S40-S30=270,∴S40=400.
    解决数列的综合问题的失分点(1)公式an=Sn-Sn-1适用于所有数列,但易忽略n≥2这个前提;
    例3 (1)已知Sn为等差数列{an}的前n项和,a3+S5=18,a5=7.若a3,a6,am成等比数列,则m=____.
    解析 设等差数列的公差为d,
    所以an=2n-3,n∈N*.
    所以2m-3=27,所以m=15.
    (2)已知等差数列{an}的前n项和为Tn,a3=4,T6=27,数列{bn}满足bn+1=b1+b2+b3+…+bn,b1=b2=1,设cn=an+bn,则数列{cn}的前11项和S11等于A.1 062 B.2 124 C.1 101 D.1 100
    解析 设数列{an}的公差为d,
    ∴数列{an}的通项公式为an=n+1.当n≥2时,bn+1-bn=bn,∴bn+1=2bn,即数列{bn}从第二项起为等比数列,∴bn=2n-2(n≥2),
    分组求和可得数列{cn}的前11项和S11=(2+3+4+…+12)+(1+1+2+22+…+29)=77+210=1 101.
    跟踪演练3 (1)(2019·黄冈、华师附中等八校联考)已知公差不为0的等差数列{an}的首项a1=3,且a2,a4,a7成等比数列,数列{bn}的前n项和Sn满足Sn=2n(n∈N*),数列{cn}满足cn=anbn(n∈N*),则数列{cn}的前3项和为A.31 B.34 C.62 D.59
    即(a1+3d)2=(a1+d)(a1+6d),由于a1=3,解得d=1,故an=n+2.当n≥2时,bn=Sn-Sn-1=2n-2n-1=2n-1,当n=1时,b1=S1=21=2,
    故cn的前3项和为a1b1+a2b2+a3b3=3×2+4×2+5×4=34.
    (2)用g(n)表示自然数n的所有因数中最大的那个奇数,例如:9的因数有1,3,9,g(9)=9,10的因数有1,2,5,10,g(10)=5,那么g(1)+g(2)+g(3)+…+g(22 019-1)=________.
    解析 由g(n)的定义易知g(n)=g(2n),且若n为奇数则g(n)=n,令f(n)=g(1)+g(2)+g(3)+…+g(2n-1),则f(n+1)=g(1)+g(2)+g(3)+…+g(2n+1-1)=1+3+…+(2n+1-1)+g(2)+g(4)+…+g(2n+1-2)
    即f(n+1)-f(n)=4n,分别取n为1,2,…,n,并累加得
    令n=2 019,得:
    由递推关系式求数列的通项公式常用的方法(1)求出数列的前几项,再归纳猜想出数列的一个通项公式(注意验证);(2)将已知递推关系式整理、变形得到等差或等比数列的通项公式,或用累加法(适用于an+1=an+f(n)型)、累乘法(适用于an+1=an·f(n)型)、待定系数法(适用于an+1=pan+q型)求通项公式.
    例4 (1)(2019·上饶重点中学六校联考)设数列{an}满足a1=3,且对任意整数n,总有(an+1-1)(1-an)=2an成立,则数列{an} 的前2 018项的和为A.588 B.589 C.2 018 D.2 019
    解析 因为(an+1-1)(1-an)=2an,
    即数列{an}是以4为周期的数列,所以a1+a2+…+a2 018=504(a1+a2+a3+a4)+a2 017+a2 018
    (2)(2019·永州模拟)设[x]表示不超过x的最大整数,已知数列{an}中,a1=2,且an+1A.99 B.100 C.101 D.102
    A.2+nln n B.2n+(n-1)ln nC.2n+nln n D.1+n+nln n
    n分别用1,2,3,…,n-1(n≥2)取代,
    即an=2n+nln n(n≥2),又a1=2符合上式,故an=2n+nln n.
    (2)(2019·漳州模拟)已知数列{an}和{bn}首项均为1,且an-1≥an(n≥2),an+1≥an,数列{bn}的前n项和为Sn,且满足2SnSn+1+anbn+1=0,则S2 019等于
    解析 由an-1≥an(n≥2),an+1≥an可得an+1=an,即数列{an}是常数列,又数列{an}的首项为1,所以an=1,所以当SnSn+1≠0时,2SnSn+1+anbn+1=0可化为2SnSn+1+bn+1=0,因为Sn为数列{bn}的前n项和,
    1.(2018·全国Ⅰ,理,4)记Sn为等差数列{an}的前n项和,若3S3=S2+S4,a1=2,则a5等于A.-12 B.-10C.10 D.12
    解析 设等差数列{an}的公差为d,由3S3=S2+S4,
    将a1=2代入上式,解得d=-3,故a5=a1+(5-1)d=2+4×(-3)=-10.
    2.(2017·全国Ⅰ,理,12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是A.440 B.330 C.220 D.110
    解析 设首项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推.
    设N是第n+1组的第k项,若要使前N项和为2的整数幂,
    即2k-1=2+n(k∈N*,n≥14),k=lg2(n+3)⇒n最小为29,
    解析 根据题意,设等差数列{an}的公差为d,则S3=3a2=3(a1+d),又由a1=1,S3=a5,得3(1+d)=1+4d,解得d=2,则am=a1+(m-1)d=2m-1=2 019,解得m=1 010.
    1.已知等差数列{an}的前n项和为Sn,若a1=1,S3=a5,am=2 019,则m=________.
    解析 因为等差数列{an}中,点(n,an)(n∈N*)在经过点(4,8)的定直线l上,∴a4=8,
    2.已知等差数列{an}中,若点(n,an)(n∈N*)在经过点(4,8)的定直线l上,则数列{an}的前7项和S7=____.
    解析 设数列{an}的公比为q,由题意易知q>1.等比数列{an}中,a3-a1=8,
    所以Sn=b1+b2+b3+…+bn-2+bn-1+bn,Sn=16[1×30+2×31+3×32+…+(n-2)×3n-3+(n-1)×3n-2+n×3n-1],3Sn=16[1×31+2×32+3×33+…+(n-2)×3n-2+(n-1)×3n-1+n×3n],两式相减得
    Sn=8n×3n-4×3n+4,故Sn=(8n-4)×3n+4.

    相关课件

    高中数学高考板块2 核心考点突破拿高分 专题5 第2讲 圆锥曲线的方程与性质(小题)课件PPT:

    这是一份高中数学高考板块2 核心考点突破拿高分 专题5 第2讲 圆锥曲线的方程与性质(小题)课件PPT,共46页。PPT课件主要包含了内容索引,热点分类突破,真题押题精练,押题预测,真题体验等内容,欢迎下载使用。

    高中数学高考板块2 核心考点突破拿高分 专题5 第1讲 直线与圆(小题)(1)课件PPT:

    这是一份高中数学高考板块2 核心考点突破拿高分 专题5 第1讲 直线与圆(小题)(1)课件PPT,共41页。PPT课件主要包含了内容索引,热点分类突破,真题押题精练,押题预测,真题体验等内容,欢迎下载使用。

    高中数学高考板块2 核心考点突破拿高分 专题3 第1讲 空间几何体、空间中的位置关系(小题)(1)课件PPT:

    这是一份高中数学高考板块2 核心考点突破拿高分 专题3 第1讲 空间几何体、空间中的位置关系(小题)(1)课件PPT,共51页。PPT课件主要包含了内容索引,热点分类突破,真题押题精练,热点二表面积与体积,热点三多面体与球,押题预测,真题体验等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map