![2021年江苏省苏州市中考数学试题(教师版)第1页](http://m.enxinlong.com/img-preview/2/3/14004408/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021年江苏省苏州市中考数学试题(教师版)第2页](http://m.enxinlong.com/img-preview/2/3/14004408/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021年江苏省苏州市中考数学试题(教师版)第3页](http://m.enxinlong.com/img-preview/2/3/14004408/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021年江苏省苏州市中考数学试题(教师版)
展开
这是一份2021年江苏省苏州市中考数学试题(教师版),共30页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
江苏省苏州市2021年中考数学真题
一、单选题
1.计算的结果是( )
A. B.3 C. D.9
2.如图所示的圆锥的主视图是( )
A. B.
C. D.
3.如图,在方格纸中,将绕点按顺时针方向旋转90°后得到,则下列四个图形中正确的是( )
A. B. C. D.
4.已知两个不等于0的实数、满足,则等于( )
A. B. C.1 D.2
5.为增强学生的环保意识,共建绿色文明校园.某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表;
班级
一班
二班
三班
四班
五班
废纸重量()
4.5
4.4
5.1
3.3
5.7
则每个班级回收废纸的平均重量为( )
A. B. C. D.
6.已知点,在一次函数的图像上,则与的大小关系是( )
A. B. C. D.无法确定
7.某公司上半年生产甲,乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机架,乙种型号无人机架.根据题意可列出的方程组是( )
A. B.
C. D.
8.已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是( )
A.或2 B. C.2 D.
9.如图,在平行四边形中,将沿着所在的直线翻折得到,交于点,连接,若,,,则的长是( )
A.1 B. C. D.
10.如图,线段,点、在上,.已知点从点出发,以每秒1个单位长度的速度沿着向点移动,到达点后停止移动,在点移动过程中作如下操作:先以点为圆心,、的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面.设点的移动时间为(秒).两个圆锥的底面面积之和为.则关于的函数图像大致是( )
A. B. C. D.
二、填空题
11.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.
12.因式分解______.
13.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是______.
14.如图.在中,,.若,则______.
15.若,则的值为______.
16.若,且,则的取值范围为______.
17.如图,四边形为菱形,,延长到,在内作射线,使得,过点作,垂足为,若,则对角线的长为______.(结果保留根号)
18.如图,射线、互相垂直,,点位于射线的上方,且在线段的垂直平分线上,连接,.将线段绕点按逆时针方向旋转得到对应线段,若点恰好落在射线上,则点到射线的距离______.
三、解答题
19.计算:.
20.解方程组:.
21.先化简再求值:,其中.
22.某学校计划在八年级开设“折扇”、“刺绣”、“剪纸”、“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程.为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查.并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据以上信息解决下列问题:
(1)参加问卷调查的学生人数为______名.补全条形统计图(画图并标注相应数据);
(2)在扇形统计图中,选择“陶艺”课程的学生占______%;
(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?
23.4张相同的卡片上分别写有数字0、1、、3,将卡片的背面朝上,洗匀后从中任意抽取1张.将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.
(1)第一次抽取的卡片上数字是负数的概率为______;
(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜:否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用画树状图或列表等方法说明理由).
24.如图,在平面直角坐标系中.四边形为矩形,点、分别在轴和轴的正半轴上,点为的中点已知实数,一次函数的图像经过点、,反比例函数的图像经过点,求的值.
25.如图,四边形内接于,,延长到点,使得,连接.
(1)求证:;
(2)若,,,求的值.
26.如图,二次函数(是实数,且)的图像与轴交于、两点(点在点的左侧),其对称轴与轴交于点,已知点位于第一象限,且在对称轴上,,点在轴的正半轴上,.连接并延长交轴于点,连接.
(1)求、、三点的坐标(用数字或含的式子表示);
(2)已知点在抛物线的对称轴上,当的周长的最小值等于,求的值.
27.如图①,甲,乙都是高为6米的长方体容器,容器甲的底面是正方形,容器乙的底面是矩形.如图②,已知正方形与矩形满足如下条件:正方形外切于一个半径为5米的圆,矩形内接于这个圆,.
(1)求容器甲,乙的容积分别为多少立方米?
(2)现在我们分别向容器甲,乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后.把容器甲的注水流量增加立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变.直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为时,我们把容器甲的水位高度记为,容器乙的水位高度记为,设,已知(米)关于注水时间(小时)的函数图像如图③所示,其中平行于横轴.根据图中所给信息,解决下列问题:
①求的值;
②求图③中线段所在直线的详解式.
28.如图,在矩形中,线段、分别平行于、,它们相交于点,点、分别在线段、上,,,连接、,与交于点.已知.设,.
(1)四边形的面积______四边形的面积(填“”、“”或“”);
(2)求证:;
(3)设四边形的面积为,四边形的面积为,求的值.
参考答案
1.B
【分析】
直接根据二次根式的性质求解即可.
【详解】
解:,
故选B.
【点睛】
此题主要考查了二次根式的性质,熟练掌握是解答此题的关键.
2.A
【详解】
试题分析:主视图是从正面看所得到的图形,圆锥的主视图是等腰三角形,如图所示:,故选A.
:三视图.
3.B
【分析】
根据绕点按顺时针方向旋转90°逐项分析即可.
【详解】
A、是由关于过B点与OB垂直的直线对称得到,故A选项不符合题意;
B、是由绕点按顺时针方向旋转90°后得到,故B选项符合题意;
C、与对应点发生了变化,故C选项不符合题意;
D、是由绕点按逆时针方向旋转90°后得到,故D选项不符合题意.
故选:B.
【点睛】
本题考查旋转变换.解题的关键是弄清旋转的方向和旋转的度数.
4.A
【分析】
先化简式子,再利用配方法变形即可得出结果.
【详解】
解:∵,
∴,
∵两个不等于0的实数、满足,
∴,
故选:A.
【点睛】
本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.
5.C
【分析】
根据平均数的定义求解即可.
【详解】
每个班级回收废纸的平均重量=.
故选:C.
【点睛】
本题考查了平均数,理解平均数的定义是解题的关键.
6.C
【分析】
根据一次函数的增减性加以判断即可.
【详解】
解:在一次函数y=2x+1中,
∵k=2>0,
∴y随x的增大而增大.
∵2
相关试卷
这是一份2021年江苏省苏州市中考数学试题,共9页。
这是一份2019江苏省苏州市中考数学试题(解析版),共8页。试卷主要包含了选择题,解答题,填空等内容,欢迎下载使用。
这是一份江苏省苏州市2020年中考数学试题(教师版),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。