所属成套资源:2023年中考数学一轮复习考点 通关练习题(含答案)
2023年中考数学一轮复习考点《等腰三角形》通关练习题(含答案)
展开
这是一份2023年中考数学一轮复习考点《等腰三角形》通关练习题(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学一轮复习考点《等腰三角形》通关练习题一 、选择题1.等腰三角形的两边长分别为5和11,则它的周长为( )A.21 B.21或27 C.27 D.252.如图,在△ABC中,AB=AC,∠BAC=58°,∠BAC的平分线与AB的垂直平分线交于点O,连接OC,则∠AOC的度数为( )A.151° B.122° C.118° D.120°3.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能得到两个等腰三角形纸片的是( )om4.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( ) A.102° B.100° C.88° D.92°5.在△ABC中,①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有( )A.1个 B.2个 C.3个 D.4个 6.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为( )A.4cm B.3cm C.2cm D.1cm7.如图,已知∠ABC=120°,BD平分∠ABC,∠DAC=60°,若AB=2,BC=3,则BD长是( )A.5 B.7 C.8 D.98.如图,已知△ABC和△BDE都是等边三角形.下列结论,其中正确的有( )①AE=CD; ②BF=BG; ③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等边三角形;⑥FG∥AD.A.3个 B.4个 C.5个 D.6个二 、填空题9.若等腰三角形的一个外角为70°,则它的底角为 .10.△ABC周长为36cm,AB=AC,AD⊥BC于D,△ABD周长为30cm,则AD= .11.如图,OB、OC分别平分∠ABC与∠ACB,MN∥BC,若AB=24,AC=36,则△AMN周长是 .12.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图①,衣架杆OA=OB=18 cm,若衣架收拢时,∠AOB=60°,如图②,则此时A,B两点之间的距离是 cm.13.如图,△ABC是等边三角形,点D为AC边上一点,以BD为边作等边△BDE,连接CE.若CD=1,CE=3,则BC= .14.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为 .三 、解答题15.如图,在△ABC中,AB=AC,E在CA延长线上,AE=AF,AD是高,试判断EF与BC的位置关系,并说明理由. 16.如图,在△ABC中,∠ABC的角平分线OB与∠ACB的角平分线OC相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.(1)请写出图中所有的等腰三角形,并给予证明;(2)若AB+AC=14,求△AMN的周长. 17.如图,已知点D是等边三角形ABC的边BC延长线上的一点,∠EBC=∠DAC,CE∥AB.求证:△CDE是等边三角形. 18.如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.(1)求证:①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明. 19.如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连结AM.(1)求证:EF=AC;(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系. 20.如图,已知在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为 时,△PBQ是等边三角形?(2)P,Q在运动过程中,△PBQ的形状不断发生变化,当t为何值时,△PBQ是直角三角形?说明理由.
答案1.C.2.B.3.B4.D5.D6.C7.A8.D.9.答案为:35°.10.答案为:12cm.11.答案为:60.12.答案为:18.13.答案为:4.14.答案为:8.15.解:EF⊥BC,理由为:证明:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AE=AF,∴∠E=∠EFA,∵∠BAC=∠E+∠EFA=2∠EFA,∴∠EFA=∠BAD,∴EF∥AD,∵AD⊥BC,∴EF⊥BC,则EF与BC的位置关系是垂直.16.解:(1)△MBO和△NOC是等腰三角形,∵OB平分∠ABC,∴∠MBO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠MBO=∠MOB,∴MO=MB,同理可证:ON=NC,∴△MBO和△NOC是等腰三角形;(2)∵OB平分∠ABC,∴∠MBO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠MBO=∠MOB,∴MO=MB,同理可证:ON=NC,∵△AMN的周长=AM+MO+ON+AN,∴△AMN的周长=AM+MB+AN+NC=AB+AC=14.17.证明:∵∠ABE+∠CBE=60°,∠CAD+∠ADC=60°,∠EBC=∠DAC,∴∠ABE=∠ADC.又CE∥AB,∴∠BEC=∠ABE.∴∠BEC=∠ADC.又BC=AC,∠EBC=∠DAC,∴△BCE≌△ACD.∴CE=CD,∠BCE=∠ACD,即∠ECD=∠ACB=60°.∴△CDE是等边三角形.18.解:(1)①∵AD∥BE,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD;②∵AD∥BE,∴∠ADC=∠DCE,由①知AB=AD,又∵AB=AC,∴AC=AD,∴∠ACD=∠ADC,∴∠ACD=∠DCE,∴CD平分∠ACE;(2)∠BDC=∠BAC,∵BD、CD分别平分∠ABE,∠ACE,∴∠DBC=∠ABC,∠DCE=∠ACE,∵∠BDC+∠DBC=∠DCE,∴∠BDC+∠ABC=∠ACE,∵∠BAC+∠ABC=∠ACE,∴∠BDC+∠ABC=∠ABC+∠BAC,∴∠BDC=∠BAC.19.证明:(1)∵CD=CB,点E为BD的中点,∴CE⊥BD,∵点F为AC的中点,∴EF=AC;(2)∵∠BAC=45°,CE⊥BD,∴△AEC是等腰直角三角形,∵点F为AC的中点,∴EF垂直平分AC,∴AM=CM,∵CD=CM+DM=AM+DM,CD=CB,∴BC=AM+DM.20.解:(1)要使,△PBQ是等边三角形,即可得:PB=BQ,∵在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.∴AB=36cm,可得:PB=36﹣2t,BQ=t,即36﹣2t=t,解得:t=12故答案为;12(2)当t为9或时,△PBQ是直角三角形,理由如下:∵∠C=90°,∠A=30°,BC=18cm∴AB=2BC=18×2=36(cm)∵动点P以2cm/s,Q以1cm/s的速度出发∴BP=AB﹣AP=36﹣2t,BQ=t∵△PBQ是直角三角形∴BP=2BQ或BQ=2BP当BP=2BQ时,36﹣2t=2t,解得t=9当BQ=2BP时,t=2(36﹣2t)解得t=所以,当t为9或时,△PBQ是直角三角形.
相关试卷
这是一份2023年中考数学一轮复习考点《图形的对称》通关练习题(含答案),共8页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习考点《视图与投影》通关练习题(含答案),共7页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习考点《实数》通关练习题(含答案),共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。