|课件下载
搜索
    上传资料 赚现金
    1.5 二次函数的应用 第2课时 二次函数的应用(2) 课件+教案
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      1.5 二次函数的应用 第2课时 二次函数的应用(2) 课件.ppt
    • 教案
      1.5 二次函数的应用 第2课时 二次函数的应用(2) 教案.doc
    1.5 二次函数的应用 第2课时 二次函数的应用(2) 课件+教案01
    1.5 二次函数的应用 第2课时 二次函数的应用(2) 课件+教案02
    1.5 二次函数的应用 第2课时 二次函数的应用(2) 课件+教案03
    1.5 二次函数的应用 第2课时 二次函数的应用(2) 课件+教案04
    1.5 二次函数的应用 第2课时 二次函数的应用(2) 课件+教案05
    1.5 二次函数的应用 第2课时 二次函数的应用(2) 课件+教案06
    1.5 二次函数的应用 第2课时 二次函数的应用(2) 课件+教案07
    1.5 二次函数的应用 第2课时 二次函数的应用(2) 课件+教案08
    1.5 二次函数的应用 第2课时 二次函数的应用(2) 课件+教案01
    1.5 二次函数的应用 第2课时 二次函数的应用(2) 课件+教案02
    还剩8页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湘教版九年级下册1.5 二次函数的应用精品课件ppt

    展开
    这是一份湘教版九年级下册1.5 二次函数的应用精品课件ppt,文件包含15二次函数的应用第2课时二次函数的应用2课件ppt、15二次函数的应用第2课时二次函数的应用2教案doc等2份课件配套教学资源,其中PPT共16页, 欢迎下载使用。

    第2课时 二次函数的应用(2)

    【知识与技能】

    1.经历探索实际问题中两个变量的过程,使学生理解用抛物线知识解决最值问题的思路.

    2.初步学会运用抛物线知识分析和解决实际问题.

    【过程与方法】

    经历优化问题的探究过程,认识数学与人类生活的密切联系及对人类历史发展的作用,发展我们运用数学知识解决实际问题的能力.

    【情感态度】

    体会数学与人类社会的密切联系,了解数学的价值,增加对数学的理解和学好数学的信心.

    【教学重点】

    能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值.

    【教学难点】

    二次函数最值在实际中生活中的应用,激发学生的学习兴趣.

    一、情境导入,初步认识

    问题1 同学们完成下列问题:已知y=x2-2x-3

    x=       时,y有最       值,其值为       

    当-1x4时,y最小值为       ,y最大值为       .

    答案:1,小,-4;-4,5

    【教学说明】解决上述问题既是对前面所学知识的巩固,又是本节课解决优化最值问题的理论依据.

    二、思考探究,获取新知

    教学点1  最大面积问题

    阅读教材P30动脑筋,回答下列问题.

    1.若设窗框的宽为x m,则窗框的高为       m,x的取值范围是       .

    2.窗框的透光面积S与x之间的关系式是什么?

    3.如何由关系式求出最大面积?

    答案:1.    0<x<

     2.S=-x2+4x,0<x<

    3.Smax=m2.

    例1  如图,从一张矩形纸片较短的边上找一点E,过E点剪下两个正方形,它们的边长分别是AE,DE,要使剪下的两个正方形的面积和最小,点E应选在何处?为什么?

    解:设矩形纸较短边长为a,设DE=x,则AE=a-x,那么两个正方形的面积和:y=x2+(a-x)2=2x2-2ax+a2当x=-时,y最小值=2×a)2-2a×a+a2=a2

    即点E选在矩形纸较短边的中点时,剪下的两个正方形的面积和最小.

    【教学说明】此题要充分利用几何关系建立二次函数模型,再利用二次函数性质求解.

    教学点2  最大利润问题

    例2  讲解教材P31例题

    【教学说明】通过例题讲解使学生初步认识到解决实际问题中的最值,首先要找出最值问题的二次函数关系式,利用二次函数的性质为理论依据来解决问题. 

    例3  某商店将每件进价8元的某种商品按每件10元出售,一天可售出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大?

    【分析】找出进价,售价,销售,总利润之间的关系,建立二次函数,再求最大值.列表分析如下:

    关系式:每件利润=售价-进价,总利润=每件利润×销量.

    解:设降价x元,总利润为y元,由题意得

    y=(10-x-8)(100+100x)=-100x2+100x+200=-100(x-0.5)2+225.

    当x=0.5时,总利润最大为225元.

    当商品的售价降低0.5元时,销售利润最大.

    三、运用新知,深化理解

    1.如图,点C是线段AB上的一个支点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是(    )

    A.当C是AB的中点时,S最小

    B.当C是AB的中点时,S最大

    C.当C为AB的三点分点时,S最小

    D.当C是AB的三等分点时,S最大

    第1题图          第2题图

    2.如图,某水渠的横断面是等腰梯形,底角为120°,两腰与下底的和为4cm,当水渠深x为         时,横断面面积最大,最大面积是         .

    3.某经销店为某工厂代销一种建筑材料,当每吨售价为260元时,月销售量为45吨,该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出1吨建筑材料共需支付厂家及其他费用100元,设每吨材料售价为x(元),该经销店的月利润为y(元).

    当每吨售价是240元时,计算此时的月销售量;

    求出y与x的函数关系式(不要求写出x的取值范围);

    该经销店要获得最大月利润,售价应定为每吨多少元?

    小静说:当月利润最大时,月销售额也最大.你认为对吗?请说明理由.【答案】1.A  2. cm, cm2 

    3.解:45+ ×7.5=60(吨).

    y=(x-100)(45+×7.5).

    化简,得y=-x2+315x-24 000.

    y=-x2+315x-24 000=-(x-210)2+9 075.

    此经销店要获得最大月利润,材料的售价应定为每吨210元.

    我认为,小静说得不对.

    理由:当月利润最大时,x为210元,每月销售额W=x(45+×7.5=- (x-160)2+19 200.当x为160元时,月销售额W最大.当x为210元时,月销售额W不是最大的.小静说得不对.

    【教学说明】1.先列出函数的解析式,再根据其增减性确定最值.2.要分清利润,销售量与售价的关系;分清最大利润与最大销售额之间的区别.

    四、师生互动,课堂小结

    1.这节课你学到了什么?还有哪些疑惑?

    2.在学生回答的基础上,教师点评:能根据实际问题建立二次函数的关系式并确定自变量取值范围,并能求出实际问题的最值.

    1.教材P31第1、2题.

    2.完成同步练习册中本课时的练习.

    本节课主要是用二次函数理论知识解决最大面积问题和最大利润问题,通过对此问题的探究解决,使学生认识到数学知识和生活实际的紧密联系,提高学习数学的积极性.

    相关课件

    湘教版九年级下册1.5 二次函数的应用一等奖ppt课件: 这是一份湘教版九年级下册1.5 二次函数的应用一等奖ppt课件,文件包含15二次函数的应用第1课时二次函数的应用1课件ppt、15二次函数的应用第1课时二次函数的应用1教案doc等2份课件配套教学资源,其中PPT共13页, 欢迎下载使用。

    初中数学5.7二次函数的应用精品ppt课件: 这是一份初中数学5.7二次函数的应用精品ppt课件,文件包含57二次函数的应用第2课时课件pptx、57二次函数的应用教案docx等2份课件配套教学资源,其中PPT共5页, 欢迎下载使用。

    冀教版九年级下册第30章 二次函数30.4 二次函数的应用精品课件ppt: 这是一份冀教版九年级下册第30章 二次函数30.4 二次函数的应用精品课件ppt,文件包含河北教育版数学九年级下·304二次函数的应用第2课时教学课件pptx、3042实际问题中二次函数的最值问题教案docx、3042实际问题中二次函数的最值问题同步练习docx、3043将二次函数问题转化为一元二次方程问题同步练习docx等4份课件配套教学资源,其中PPT共20页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        1.5 二次函数的应用 第2课时 二次函数的应用(2) 课件+教案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map