所属成套资源:【优化探究】最新数学新中考二轮复习重难突破(江苏专用)
备战2023数学新中考二轮复习重难突破(江苏专用)专题13 三角形与全等三角形
展开
这是一份备战2023数学新中考二轮复习重难突破(江苏专用)专题13 三角形与全等三角形,文件包含备战2023数学新中考二轮复习重难突破江苏专用专题13三角形与全等三角形解析版docx、备战2023数学新中考二轮复习重难突破江苏专用专题13三角形与全等三角形原卷版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
重点分析中考中多以填空题、选择题的形式考查三角形的边角关系,通过解答题来考查全等三角形的性质及判定.全等三角形在中考中常与平行四边形、二次函数、圆等知识相结合,考查学生综合运用知识的能力.难点解读难点一、三角形的概念及性质1.概念:(1)由三条线段首尾顺次相接组成的图形,叫做三角形.(2)三角形按边可分为:非等腰三角形和等腰三角形;按角可分为:锐角三角形、钝角三角形和直角三角形.2.性质:(1)三角形的内角和是180°;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角.(2)三角形的任意两边之和大于第三边;三角形任意两边之差小于第三边.难点二、三角形中的重要线段1.三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.特性:三角形的三条角平分线交于一点,这点叫做三角形的内心.2.三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称高.特性:三角形的三条高线相交于一点.3.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角形的三条中线交于一点.4.三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线.定理:三角形的中位线平行于第三边,且等于它的一半.难点三、全等三角形的性质与判定1.概念:能够完全重合的两个三角形叫做全等三角形.2.性质:全等三角形的对应边、对应角分别相等.3.判定:(1)有三边对应相等的两个三角形全等,简记为(SSS);(2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS);(3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA);(4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS);(5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).真题演练1.(2021·江苏盐城市)将一副三角板按如图方式重叠,则的度数为( )A. B. C. D.2.(2021·江苏宿迁市)如图,在△ABC中,∠A=70°,∠C=30°,BD平分∠ABC交AC于点D,DE∥AB,交BC于点E,则∠BDE的度数是( )
A.30° B.40° C.50° D.60°3.(2021·江苏扬州市)如图,点A、B、C、D、E在同一平面内,连接、、、、,若,则( )A. B. C. D.4.(2021·江苏常州市)如图,在中,点D、E分别在、上,.若,则________.5.(2021·江苏泰州市)如图,木棒AB、CD与EF分别在G、H处用可旋转的螺丝铆住,∠EGB=100°,∠EHD=80°,将木棒AB绕点G逆时针旋转到与木棒CD平行的位置,则至少要旋转 ___°.6.(2021·江苏扬州市)如图,在的正方形网格中有两个格点A、B,连接,在网格中再找一个格点C,使得是等腰直角三角形,满足条件的格点C的个数是( )A.2 B.3 C.4 D.57.(2021·江苏苏州市)如图.在中,,.若,则______.8.(2021·江苏南京市)如图,在四边形中,.设,则______(用含的代数式表示).9.(2021·江苏无锡市)已知:如图,,相交于点O,,.求证:(1);(2).10.(2021·江苏盐城市)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在的两边、上分别在取,移动角尺,使角尺两边相同的刻度分别与点、重合,这时过角尺顶点的射线就是的平分线.这里构造全等三角形的依据是( )A. B. C. D.11.(2021·江苏常州市)如图,B、F、C、E是直线l上的四点,.(1)求证:;(2)将沿直线l翻折得到.①用直尺和圆规在图中作出(保留作图痕迹,不要求写作法);②连接,则直线与l的位置关系是__________.12.(2021·江苏徐州市)如图,为的直径,点在上,与交于点,,连接.求证:(1);(2)四边形是菱形.
13.(2021·江苏盐城市)如图,在Rt中,为斜边上的中线,若,则________.14.(2021·江苏南通市)如图,一艘轮船位于灯塔P的南偏东方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东方向上的B处,此时B处与灯塔P的距离为___________海里(结果保留根号).15.(2021·江苏宿迁市)《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(示意图如图,则水深为__尺.16.(2021·江苏南通市)如图,在中,,,以点A为圆心,长为半径画弧,交延长线于点D,过点C作,交于点,连接BE,则的值为___________.
相关试卷
这是一份备战2023数学新中考二轮复习重难突破(江苏专用)专题21 概率,文件包含备战2023数学新中考二轮复习重难突破江苏专用专题21概率解析版docx、备战2023数学新中考二轮复习重难突破江苏专用专题21概率原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份备战2023数学新中考二轮复习重难突破(江苏专用)专题20 统计,文件包含备战2023数学新中考二轮复习重难突破江苏专用专题20统计解析版docx、备战2023数学新中考二轮复习重难突破江苏专用专题20统计原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份备战2023数学新中考二轮复习重难突破(江苏专用)专题19 与圆有关的计算,文件包含备战2023数学新中考二轮复习重难突破江苏专用专题19与圆有关的计算解析版docx、备战2023数学新中考二轮复习重难突破江苏专用专题19与圆有关的计算原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。