专题14二次函数与线段数量关系最值定值问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(学生版)
展开挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)
专题14二次函数与线段数量关系最值定值问题
图形运动的过程中,求两条线段之间的函数关系,是中考数学的热点问题.
产生两条线段间的函数关系,常见的情况有两种,一是勾股定理,二是比例关系.还有一种不常见的,就是线段全长等于部分线段之和.由比例线段产生的函数关系问题,在两种类型的题目中比较常用.
一是由平行线产生的对于线段成比例,二是相似三角形的对应边成比例.
一般步骤是先说理产生比例关系,再代入数值或表示数的字母,最后整理、变形,根据要求写出定义域.关键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错.
【例1】(2022•武汉模拟)抛物线y=x2﹣2x+m的顶点A在x轴上,与y轴交于点B.
(1)求抛物线的解析式;
(2)如图1,直线CD∥AB交抛物线于C,D两点,若,求△COD的面积;
(3)如图2,P为抛物线对称轴上顶点下方的一点,过点P作直线交抛物线于点E,F,交x轴于点M,求的值.
【例2】(2022•黄石)如图,抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P是第一象限内抛物线上的一点且横坐标为m.
(1)A,B,C三点的坐标为 , , .
(2)连接AP,交线段BC于点D,
①当CP与x轴平行时,求的值;
②当CP与x轴不平行时,求的最大值;
(3)连接CP,是否存在点P,使得∠BCO+2∠PCB=90°,若存在,求m的值,若不存在,请说明理由.
【例3】(2022•河南三模)如图,抛物线y=ax2+bx﹣4交x轴于A,B两点,交y轴于点C,OB=2OC=4OA,连接AC,BC.
(1)求抛物线的解析式;
(2)点D是抛物线y=ax2+bx﹣4的图象上在第四象限内的一动点,DE⊥x轴于点E,交BC于点F.设点D的横坐标为m.
①请用含m的代数式表示线段DF的长;
②已知DG∥AC,交BC于点G,请直接写出当时点D的坐标.
【例4】(2021•大庆)如图,抛物线y=ax2+bx+c与x轴交于原点O和点A,且其顶点B关于x轴的对称点坐标为(2,1).
(1)求抛物线的函数表达式;
(2)抛物线的对称轴上存在定点F,使得抛物线y=ax2+bx+c上的任意一点G到定点F的距离与点G到直线y=﹣2的距离总相等.
①证明上述结论并求出点F的坐标;
②过点F的直线l与抛物线y=ax2+bx+c交于M,N两点.
证明:当直线l绕点F旋转时,+是定值,并求出该定值;
(3)点C(3,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQBC周长最小,直接写出P,Q的坐标.
1.(2020•道里区二模)已知:在平面直角坐标系中,点O为坐标原点,抛物线y=﹣+bx+3交x轴于A、B两点(点B在点A的右边)交y轴于点C,OB=3OC.
(1)如图1,求抛物线的解析式;
(2)如图2,点E是第一象限抛物线上的点,连接BE,过点E作ED⊥OB于点D,tan∠EBD=,求△BDE的面积;
(3)如图3,在(2)的条件下,连接BC交DE于点Q,点K是第四象限抛物线上的点,连接EK交BC于点M,交x轴于点N,∠EMC=45°,过点K作直线KT⊥x轴于点T,过点E作EL∥x轴,交直线KT于点L,点F是抛物线对称轴右侧第一象限抛物线上的点,连接ET、LF,LF的延长线交ET于点P,连接DP并延长交EL于点S,SE=2SL,求点F的坐标.
2.(2020•三明二模)如图,抛物线y=x2+mx(m<0)交x轴于O,A两点,顶点为点B.
(Ⅰ)求△AOB的面积(用含m的代数式表示);
(Ⅱ)直线y=kx+b(k>0)过点B,且与抛物线交于另一点D(点D与点A不重合),交y轴于点C.过点C作CE∥AB交x轴于点E.
(ⅰ)若∠OBA=90°,2<<3,求k的取值范围;
(ⅱ)求证:DE∥y轴.
3.(2022•杜尔伯特县一模)如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.
(1)求抛物线的解析式;
(2)若点E在x轴上,且∠ECB=∠CBD,求点E的坐标.
(3)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M.
①求线段PM长度的最大值.
②在①的条件下,若F为y轴上一动点,求PH+HF+CF的最小值.
4.(2020•江岸区校级一模)已知:抛物线y=x2+x+m交x轴于A,B两点,交y轴于点C,其中点B在点A的右侧,且AB=7.
(1)如图1,求抛物线的解析式;
(2)如图2,点D在第一象限内抛物线上,连接CD,AD,AD交y轴于点E.设点D的横坐标为d,△CDE的面积为S,求S与d之间的函数关系式(不要求写出自变量d的取值范围);
(3)如图3,在(2)的条件下,过点D作DH⊥CE于点H,点P在DH上,连接CP,若∠OCP=2∠DAB,且HE:CP=3:5,求点D的坐标及相应S的值.
5.(2020•涡阳县一模)如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).
(1)求抛物线的解析式.
(2)点P是直线上方的抛物线上的一个动点,求△ABP的面积最大时的P点坐标.
(3)若点P是抛物线上的一个动点(不与点A点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.当PE=2ED时,求P点坐标;
(4)设抛物线与y轴交于点F,在抛物线的第一象限内,是否存在一点M,使得AM被FC平分?若存在,请求出点M的坐标;若不存在,说明理由.
6.(2021•桂林)如图,已知抛物线y=a(x﹣3)(x+6)过点A(﹣1,5)和点B(﹣5,m),与x轴的正半轴交于点C.
(1)求a,m的值和点C的坐标;
(2)若点P是x轴上的点,连接PB,PA,当=时,求点P的坐标;
(3)在抛物线上是否存在点M,使A,B两点到直线MC的距离相等?若存在,求出满足条件的点M的横坐标;若不存在,请说明理由.
7.(2021•甘肃)如图,在平面直角坐标系中,抛物线y=x2+bx+c与坐标轴交于A(0,﹣2),B(4,0)两点,直线BC:y=﹣2x+8交y轴于点C.点D为直线AB下方抛物线上一动点,过点D作x轴的垂线,垂足为G,DG分别交直线BC,AB于点E,F.
(1)求抛物线y=x2+bx+c的表达式;
(2)当GF=时,连接BD,求△BDF的面积;
(3)①H是y轴上一点,当四边形BEHF是矩形时,求点H的坐标;
②在①的条件下,第一象限有一动点P,满足PH=PC+2,求△PHB周长的最小值.
8.(2021•丽水)如图,已知抛物线L:y=x2+bx+c经过点A(0,﹣5),B(5,0).
(1)求b,c的值;
(2)连结AB,交抛物线L的对称轴于点M.
①求点M的坐标;
②将抛物线L向左平移m(m>0)个单位得到抛物线L1.过点M作MN∥y轴,交抛物线L1于点N.P是抛物线L1上一点,横坐标为﹣1,过点P作PE∥x轴,交抛物线L于点E,点E在抛物线L对称轴的右侧.若PE+MN=10,求m的值.
9.(2020•陕西)已知抛物线L:y=﹣x2+bx+c过点(﹣3,3)和(1,﹣5),与x轴的交点为A,B(点A在点B的左侧).
(1)求抛物线L的表达式;
(2)若点P在抛物线L上,点E、F在抛物线L的对称轴上,D是抛物线L的顶点,要使△PEF∽△DAB(P的对应点是D),且PE:DA=1:4,求满足条件的点P的坐标.
10.(2020•盘锦)如图1,直线y=x﹣4与x轴交于点B,与y轴交于点A,抛物线y=﹣x2+bx+c经过点B和点C(0,4),△ABO沿射线AB方向以每秒个单位长度的速度平移,平移后的三角形记为△DEF(点A,B,O的对应点分别为点D,E,F),平移时间为t(0<t<4)秒,射线DF交x轴于点G,交抛物线于点M,连接ME.
(1)求抛物线的解析式;
(2)当tan∠EMF=时,请直接写出t的值;
(3)如图2,点N在抛物线上,点N的横坐标是点M的横坐标的,连接OM,NF,OM与NF相交于点P,当NP=FP时,求t的值.
11.(2022•深圳三模)如图1,抛物线y=ax2+bx经过点A(﹣5,0),点B(﹣1,﹣2).
(1)求抛物线解析式;
(2)如图2,点P为抛物线上第三象限内一动点,过点Q(﹣4,0)作y轴的平行线,交直线AP于点M,交直线OP于点N,当点P运动时,4QM+QN的值是否变化?若变化,说明变化规律,若不变,求其值;
(3)如图3,长度为的线段CD(点C在点D的左边)在射线AB上移动(点C在线段AB上),连接OD,过点C作CE∥OD交抛物线于点E,线段CD在移动的过程中,直线CE经过一定点F,直接写出定点F的坐标与的最小值.
12.(2022•阿克苏地区一模)如图1.抛物线与x轴交于A、B两点,与y轴交于点C,连接BC,已知点B(4,0).
(1)若C(0,3),求抛物线的解析式.
(2)在(1)的条件下,P(﹣2,m)为该抛物线上一点,Q是x轴上一点求的最小值,并求此时点Q的坐标.
(3)如图2.过点A作BC的平行线,交y轴与点D,交抛物线于另一点E.若DE=7AD,求c的值.
13.(2022•松江区二模)如图,在平面直角坐标系中,已知直线y=2x+8与x轴交于点A、与y轴交于点B,抛物线y=﹣x2+bx+c经过点A、B.
(1)求抛物线的表达式;
(2)P是抛物线上一点,且位于直线AB上方,过点P作PM∥y轴、PN∥x轴,分别交直线AB于点M、N.
①当MN=AB时,求点P的坐标;
②联结OP交AB于点C,当点C是MN的中点时,求的值.
14.(2022•游仙区模拟)如图,抛物线与坐标轴分别交于A(﹣1,0),B(3,0),C(0,3).
(1)求抛物线的解析式;
(2)抛物线上是否存在点P,使得∠CBP=∠ACO,若存在,求出点P的坐标;若不存在,说明理由;
(3)如图2,Q是△ABC内任意一点,求++的值.
15.(2022•龙岩模拟)抛物线y=ax2+bx+c经过A(﹣1,0),B(3,4)两点,与y轴交于点C.
(1)求抛物线的解析式(用含a的式子表示);
(2)当a>0时,连接AB,BC,若tan∠ABC=,求a的值;
(3)直线y=﹣x+m与线段AB交于点P,与抛物线交于M,N两点(点M在点N的左侧),若PM•PN=6,求m的值.
16.(2022•雷州市模拟)如图(1),抛物线y=ax2+bx+6与x轴交于点A(﹣6,0)、B(2,0),与y轴交于点C,抛物线对称轴交抛物线于点M,交x轴于点N.点P是抛物线上的动点,且位于x轴上方.
(1)求抛物线的解析式.
(2)如图(2),点D与点C关于直线MN对称,若∠CAD=∠CAP,求点P的坐标.
(3)直线BP交y轴于点E,交直线MN于点F,猜想线段OE、FM、MN三者之间存在的数量关系,并证明.
17.(2022•马鞍山二模)如图,抛物线y=ax2+bx﹣3交x轴于点A(﹣1,0)、B(3,0),与y轴交于C点,直线y=kx(k<0)交线段BC下方抛物线于D点,交BC于E点
(1)分别求出a、b的值;
(2)求出线段BC的函数关系式,并写出自变量取值范围;
(3)探究是否有最大值,若存在,请求出此时k值,若不存在,请说明理由.
18.(2022•南岗区校级二模)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=﹣ax2+6ax+6与y轴交于点B,交x轴的负半轴于点A,交x轴的正半轴于点C,且S△ABC=30.
(1)求抛物线的解析式;
(2)如图2,点P为第一象限抛物线上一点,其横坐标为t,PD⊥x轴于点D,设tan∠PAD等于m,求m与t之间的函数关系式;
(3)如图3,在(2)的条件下,当m=时,过点B作BN⊥AB交∠PAC的平分线于点N,点K在线段AB上,点M在线段AN上,连接KM、KN,∠MKN=2∠BNK,作MT⊥KN于点T,延长MT交BN于点H,若NH=4BH,求直线KN的解析式.
19.(2022•江汉区校级模拟)如图1,已知抛物线y=ax2+bx+c(a>0)与x轴交于A(﹣1,0),B(3,0),与y轴交于点C.
(1)若C(0,﹣3),求抛物线的解析式;
(2)在(1)的条件下,E是线段BC上一动点,AE交抛物线于F点,求的最大值;
(3)如图2,点N为y轴上一点,AN、BN交抛物线于E、F两点,求•的值.
20.(2022•成都模拟)如图,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A,B,C的坐标及抛物线的对称轴;
(2)如图1,点P(1,m),Q(1,m﹣2)是两动点,分别连接PC,QB,请求出|PC﹣QB|的最大值,并求出m的值;
(3)如图2,∠BAC的角平分线交y轴于点D,过D点的直线l与射线AB,AC分别于E,F,当直线l绕点D旋转时,是否为定值,若是,请求出该定值;若不是,请说明理由.
21.(2022•沈阳模拟)如图,在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,直线l:y=kx+b经过点B,点C,点P是抛物线上一动点,连接OP交直线BC于点D.
(1)求直线l的解析式;
(2)当=时,求点P的坐标;
(3)在(2)的条件下,点N是直线BC上一动点,连接ON,过点D作DF⊥ON于点F,点F在线段ON上,当OD=DF时,请直接写出点N的坐标.
22.(2022•沈阳模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣过点A(3,2)和点B(,0),与x轴的另一个交点为点C.
(1)求抛物线的函数表达式.
(2)判断△ABC的形状,并说明理由.
(3)点D在线段BC上,连接AD,作DE⊥AD,且DE=AD,连接AE交x轴于点F.点F不与点C重合,射线DP⊥AE,交AE于点P,交AC于点Q.
①当AD=AF时,请直接写出∠CAE的度数;
②当=时,请直接写出CQ的长.