终身会员
搜索
    上传资料 赚现金

    初中数学中考复习 专题62数据的收集与整理(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)

    立即下载
    加入资料篮
    初中数学中考复习 专题62数据的收集与整理(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)第1页
    初中数学中考复习 专题62数据的收集与整理(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)第2页
    初中数学中考复习 专题62数据的收集与整理(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)第3页
    还剩89页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题62数据的收集与整理(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)

    展开

    这是一份初中数学中考复习 专题62数据的收集与整理(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共92页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
    专题62数据的收集与整理(2)(全国一年)
    学校:___________姓名:___________班级:___________考号:___________


    一、单选题
    1.(2020·湖南湘潭?中考真题)为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:、“北斗卫星”:、“时代”;、“智轨快运系统”;、“东风快递”;、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“时代”的频率是( )

    A.0.25 B.0.3 C.25 D.30
    【答案】B
    【解析】
    【分析】
    先计算出八年级(3)班的全体人数,然后用选择“5G时代”的人数除以八年级(3)班的全体人数即可.
    【详解】
    由图知,八年级(3)班的全体人数为:(人)
    选择“5G时代”的人数为:30人
    ∴选择“时代”的频率是:
    故选:B.
    【点睛】
    本题考查了频数分布直方图的读取,及相应频率的计算,熟知以上知识是解题的关键.
    2.(2020·湖南张家界?中考真题)下列采用的调查方式中,不合适的是( )
    A.了解澧水河的水质,采用抽样调查.
    B.了解一批灯泡的使用寿命,采用全面调查.
    C.了解张家界市中学生睡眠时间,采用抽样调查.
    D.了解某班同学的数学成绩,采用全面调查.
    【答案】B
    【解析】
    【分析】
    根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.
    【详解】
    解:了解澧水河的水质,采用普查不太可能做到,所以采用抽样调查,故A合适,
    了解一批灯泡的使用寿命,不宜采用全面调查,因为调查带有破坏性,故B不合适,
    了解张家界市中学生睡眠时间,工作量大,宜采用抽样调查,故C合适,
    了解某班同学的数学成绩,采用全面调查.合适,故D合适,
    故选B.
    【点睛】
    本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    3.(2020·湖南中考真题)下列说法正确的是(  )
    A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨
    B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上
    C.了解一批花炮的燃放质量,应采用抽样调查方式
    D.一组数据的众数一定只有一个
    【答案】C
    【解析】
    【分析】
    根据必然事件的概念、众数的定义、随机事件的概率逐项分析即可得出答案.
    【详解】
    解:A、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误;
    B、抛掷一枚质地均匀的硬币两次,正面朝上的概率是,故本选项错误;
    C、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确;
    D、一组数据的众数不一定只有一个,故本选项错误;
    故选:C.
    【点睛】
    此题主要考查统计与概率的定义,解题的关键是熟知概率的定义、统计调查的方法及众数的定义.
    4.(2020·四川乐山?中考真题)某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、 “优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为( )

    A. B. C. D.
    【答案】A
    【解析】
    【分析】

    先求出“良”和“优”的人数所占的百分比,然后乘以2000即可.
    【详解】

    解:“良”和“优”的人数所占的百分比:×100%=55%,
    ∴在2000人中成绩为“良”和“优”的总人数估计为2000×55%=1100(人),
    故选:A.
    【点睛】

    本题考查了用样本估计总体,求出“良”和“优”的人数所占的百分比是解题关键.
    5.(2020·四川广元?中考真题)下列各图是截止2020年6月18日的新冠肺疫情统计数据,则以下结论错误的是( )

    A.图1显示印度新增确诊人数大约是伊朗的两倍.每百万人口的确诊人数大约是伊朗的
    B.图1显示俄罗斯当前的治愈率高于西班牙
    C.图2显示海外新增确诊人数随时间的推移总体呈增长趋势
    D.图3显示在2-3月之间,我国现有确诊人数达到最多
    【答案】A
    【解析】
    【分析】
    【详解】


    6.(2020·河南中考真题)要调查下列问题,适合采用全面调查(普查)的是( )
    A.中央电视台《开学第--课》 的收视率
    B.某城市居民6月份人均网上购物的次数
    C.即将发射的气象卫星的零部件质量
    D.某品牌新能源汽车的最大续航里程
    【答案】C
    【解析】
    【分析】
    根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.
    【详解】
    A、中央电视台《开学第--课》 的收视率适合采用抽样调查方式,故不符合题意;
    B、某城市居民6月份人均网上购物的次数适合采用抽样调查方式,故不符合题意;
    C、即将发射的气象卫星的零部件质量适合采用全面调查方式,故符合题意;
    D、某品牌新能源汽车的最大续航里程适合采用抽样调查方式,故不符合题意,
    故选:C.
    【点睛】
    本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    7.(2020·贵州贵阳?中考真题)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫.一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( )
    A.直接观察 B.实验 C.调查 D.测量
    【答案】C
    【解析】
    【分析】
    根据得到数据的活动特点进行判断即可.
    【详解】
    解:因为获取60岁以上人的年龄进行了数据的收集和整理,所以此活动是调查.
    故选:C.
    【点睛】
    本题考查了数据的获得方式,解题的关键是要明确,调查要进行数据的收集和整理.
    8.(2020·江苏南京?中考真题)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数据,年年末全国农村贫困人口的情况如图所示,根据图中提供的信息,下列说法错误的是( )

    A.2019年末,农村贫困人口比上年末减少551万人
    B.2012年末至2019年末,农村贫困人口累计减少超过9000万人
    C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上
    D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村人口的任务
    【答案】A
    【解析】
    【分析】

    用2018年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断A;
    用2012年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断B;
    根据2012~2019年年末全国农村贫困发生率统计图,通过计算即可判断C;
    根据2012~2019年年末全国农村贫困发生率统计图,即可判断D.
    【详解】

    A、1660-551=1109,即2019年末,农村贫困人口比上年末减少1109万人,故本选项推断不合理,符合题意;
    B、2012年末至2019年末,农村贫困人口累计减少:9899-551=9348,所以超过9000万人,故本选项推断合理,不符合题意;
    C、9899-8249=1650,8249-7017=1232,7017-5575=1442,5575-4335=1240,4335-3046=1289,3046-1660=1386,1660-551=1109,所以连续7年每年农村贫困人口减少1000万人以上,故本选项推理合理,不符合题意;
    D、根据2012~2019年年末全国农村贫困发生率统计图,知:2019年末,还有551万农村人口的脱贫任务,故本选项推理合理,不符合题意;
    故选:A.
    【点睛】

    本题考查了条形统计图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.


    二、填空题
    9.(2020·四川攀枝花?中考真题)如图是某校参加各兴趣小组的学生人数分布扇形统计图,已知参加课程兴趣小组的人数为120人,则该校参加各兴趣小组的学生共有________人.

    【答案】600
    【解析】
    【分析】
    根据扇形统计图中相应的项目的百分比,结合参加STEAM课程兴趣小组的人数为120人,即可算出结果.
    【详解】
    解:∵参加课程兴趣小组的人数为120人,百分比为20%,
    ∴参加各兴趣小组的学生共有120÷20%=600人,
    故答案为:600.
    【点睛】
    本题考查了扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
    10.(2020·四川自贡?中考真题)某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计,以下是打乱了的调查统计顺序,请按正确顺序重新排序 (只填番号)_________________.
    ①.绘制扇形图;②.收集最受学生欢迎菜品的数据;③.利用扇形图分析出受欢迎的统计图;④.整理所收集的数据.
    【答案】②④①③
    【解析】
    【分析】
    根据统计的一般顺序排列即可.
    【详解】
    统计的一般步骤,一般要经过收集数据,整理数据,绘制统计图表,分析图表得出结论,
    故答案为:②④①③.
    【点睛】
    本题考查统计的一般步骤,一般要经过收集数据,整理数据,绘制统计图表,分析图表得出结论.
    11.(2020·浙江中考真题)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为与,则__填"”、“=”、 “"中的一个).

    【答案】
    【解析】
    【分析】
    利用折线统计图可判断乙同学的成绩波动较大,然后根据方差的意义可得到甲、乙的方差的大小.
    【详解】
    解:由折线统计图得乙同学的成绩波动较大,
    所以1,故重量超过了1kg,除了付基础费用8元,还需要付超过1k部分0.6kg的费用2元,
    则该顾客应付费用为8+2=10元;
    ②元.
    所以这40件包裹收取费用的平均数为14元.
    【点睛】
    本题考查频数分布直方图、加权平均数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    64.(2020·四川广元?中考真题)广元市某中学举行了“禁毒知识竞赛”,王老师将九年级(1)班学生成绩划分为A、B、C、D、E五个等级,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:

    (1)求九年级(1)班共有多少名同学?
    (2)补全条形统计图,并计算扇形统计图中的“C”所对应的圆心角度数;
    (3)成绩为A类的5名同学中,有2名男生和3名女生;王老师想从这5名同学中任选2名同学进行交流,请用列表法或画树状图的方法求选取的2名同学都是女生的概率.
    【答案】(1)50;(2)见解析,108°;(3).
    【解析】
    【分析】
    (1)由B的人数和其所占的百分比即可求出总人数;
    (2)C的人数可知,而总人数已求出,进而可求出其所对应扇形的圆心角的度数;根据求出的数据即可补全条形统计图;
    (3)列表得出所有等可能的情况数,找出刚好抽到2名同学都是女生的情况数,即可求出所求的概率.
    【详解】
    解:(1)由题意可知总人数=10÷20%=50名;
    (2)补全条形统计图如图所示:

    扇形统计图中C等级所对应扇形的圆心角=15÷50×100%×360°=108°;
    (3)列表如下:

    得到所有等可能的情况有20种,其中恰好抽中2名同学都是女生的情况有6种,
    所以恰好选到2名同学都是女生的概率==.
    【点睛】
    此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
    65.(2020·湖南怀化?中考真题)为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:

    (1)本次被抽查的学生共有_____________名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为___________度;
    (2)请你将条形统计图补全;
    (3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C.社会实践类”的学生共有多少名?
    (4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.
    【答案】(1)50,72;(2)见解析;(3)96名;(4).
    【解析】
    【分析】
    (1)用条形统计图中D类的人数除以扇形统计图中D类所占百分比即可求出被抽查的总人数,用条形统计图中A类的人数除以总人数再乘以360°即可求出扇形统计图中A类所占扇形的圆心角的度数;
    (2)用总人数减去其它三类人数即得B类人数,进而可补全条形统计图;
    (3)用C类人数除以总人数再乘以600即可求出结果;
    (4)先利用列表法求出所有等可能的结果数,再找出王芳和小颖两名学生选择同一个项目的结果数,然后根据概率公式计算即可.
    【详解】
    解:(1)本次被抽查的学生共有:20÷40%=50名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为;
    故答案为:50,72;
    (2)B类人数是:50-10-8-20=12名,补全条形统计图如图所示:

    (3)名,
    答:估计该校学生选择“C.社会实践类”的学生共有96名;
    (4)所有可能的情况如下表所示:


    由表格可得:共有16种等可能的结果,其中王芳和小颖两名学生选择同一个项目的结果有4种,
    ∴王芳和小颖两名学生选择同一个项目的概率.
    【点睛】
    本题是统计与概率类综合题,主要考查了条形统计图、扇形统计图、利用样本估计总体和求两次事件的概率等知识,属于常考题型,正确理解题意、熟练掌握上述基本知识是解题的关键.
    66.(2020·湖南湘潭?中考真题)“停课不停学”.突如其来的新冠肺炎疫情让网络学习成为了今年春天一道别样的风景.隔离的是身体,温暖的是人心.“幸得有你,山河无恙”.在钟南山、白衣天使等人众志成城下,战胜了疫情.在春暖花开,万物复苏之际,某校为了解九年级学生居家网络学习情况,以便进行有针对性的教学安排,特对他们的网络学习时长(单位:小时)进行统计.现随机抽取20名学生的数据进行分析:
    收集数据:4.5,6,5.5,6.5,6.5,5.5,7,6,7.5,8,6.5,8,7.5,5.5,6.5,7,6.5,6,6.5,5
    整理数据:
    时长(小时)




    人数
    2

    8
    4


    分析数据:
    项目
    平均数
    中位数
    众数
    数据
    6.4
    6.5




    应用数据:
    (1)填空:________,________;
    (2)补全频数直方图;
    (3)若九年级共有1000人参与了网络学习,请估计学习时长在小时的人数.
    【答案】(1),;(2)见解析;(3)700人
    【解析】
    【分析】
    (1)根据所给数据找出范围内的数据即可;找出数据中次数最多的数据即为所求;
    (2)根据(1)中的数据画图即可;
    (3)先算出在的概率,用总数乘以概率即可;
    【详解】
    (1)由总人数是20人可得在的人数是(人),所以a=6,根据数据显示,6.5出现的次数最多,所以数据中心的众数是6.5;
    故,.
    (2)由(1)得可作图:

    (3)由图可知,学习时长在小时的人数的概率=,
    ∴(人).
    ∴学习时长在小时的人数是700人.
    【点睛】
    本题主要考查了数据分析的知识点应用,准确计算中位数、众数和概率是解题的关键.
    67.(2020·黑龙江中考真题)为了提高学生体质,战胜疫情,某中学组织全校学生宅家一分钟跳绳比赛,全校跳绳平均成绩是每分钟次,某班班长统计了全班名学生一分钟跳绳成绩,列出的频数分布直方图如图所示,(每个小组包括左端点,不包括右端点).

    求:(1)该班一分钟跳绳的平均次数至少是多少,是否超过全校的平均次数;
    (2)该班的一个学生说:“我的跳绳成绩是我班的中位数”请你给出该生跳绳成绩的所在范围;
    (3)从该班中任选一人,其跳绳次数超过全校平均数的概率是多少.
    【答案】(1)平均次数至少是次,超过全校的平均次数;(2)跳绳成绩所在范围为;(3).
    【解析】
    【分析】
    (1)观察直方图,用每组的最低成绩,根据加权平均数公式计算可得该班一分钟跳绳的最少平均次数,再与校平均成绩比较即可得答案;
    (2)根据中位数意义,确定中位数的范围即可;
    (3)先确定出该班一分钟跳绳成绩大于或等于100次的人数,然后利用概率公式进行求解即可.
    【详解】
    (1)该班一分钟跳绳的平均次数至少为

    即该班一分钟跳绳的平均次数至少是100.8次,超过了全校的平均次数;
    (2)这个学生的跳绳成绩在该班是中位数,
    共有50名学生,可知中位数是将跳绳次数从小到大排列后位于第25、26这两个次数的平均数,
    因为4+13=1726,
    所以中位数一定在100~120范围内,
    即该生跳绳成绩的所在范围为100~120;
    (3)该班一分钟跳绳成绩大于或等于100次的有:l9+7+5+2=33(人),
    所以P(其跳绳次数超过全校平均数)=,
    答:从该班中任选一人,其跳绳次数超过全校平均数的概率为.
    【点睛】
    本题考查了频数分布直方图,简单的概率计算,中位数等知识,读懂统计图,弄清题意,找准相关数据,灵活运用相关知识是解题的关键.




















    相关试卷

    初中数学中考复习 专题66概率(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版):

    这是一份初中数学中考复习 专题66概率(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共77页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题62数据的收集与整理(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版):

    这是一份初中数学中考复习 专题62数据的收集与整理(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版),共37页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题61数据的收集与整理(1)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版):

    这是一份初中数学中考复习 专题61数据的收集与整理(1)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共120页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map