终身会员
搜索
    上传资料 赚现金

    初中数学中考复习 专题40三角形(5)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)

    立即下载
    加入资料篮
    初中数学中考复习 专题40三角形(5)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)第1页
    初中数学中考复习 专题40三角形(5)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)第2页
    初中数学中考复习 专题40三角形(5)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)第3页
    还剩212页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题40三角形(5)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)

    展开

    这是一份初中数学中考复习 专题40三角形(5)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共215页。试卷主要包含了解答题等内容,欢迎下载使用。
    专题40三角形(5)(全国一年)
    学校:___________姓名:___________班级:___________考号:___________



    一、解答题
    1.(2020·江苏南通?中考真题)(了解概念)
    有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.

    (理解运用)
    (1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;
    (2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;
    (拓展提升)
    (3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.
    【答案】(1);(2)四边形ABCD是对余四边形,证明见解析;(3)u=(0<t<4).
    【解析】
    【分析】
    (1)先构造直角三角形,然后利用对余四边形的性质和相似三角形的性质,求出sin∠CAD的值.
    (2)通过构造手拉手模型,即构造等腰直角三角形,通过证明三角形全等,利用勾股定理来证明四边形ABCD为对余四边形.
    (3)过点D作DH⊥x轴于点H,先证明△ABE∽△DBA,得出u与AD的关系,设D(x,t),再利用(2)中结论,求出AD与t的关系即可解决问题.
    【详解】
    解:(1)过点A作AE⊥BC于E,过点C作CF⊥AD于F.

    ∵AC=AB,
    ∴BE=CE=3,
    在Rt△AEB中,AE=,
    ∵CF⊥AD,
    ∴∠D+∠FCD=90°,
    ∵∠B+∠D=90°,
    ∴∠B=∠DCF,
    ∵∠AEB=∠CFD=90°,
    ∴△AEB∽△DFC,
    ∴,
    ∴,
    ∴CF=,
    ∴sin∠CAD=.
    (2)如图②中,结论:四边形ABCD是对余四边形.

    理由:过点D作DM⊥DC,使得DM=DC,连接CM.
    ∵四边形ABCD中,AD=BD,AD⊥BD,
    ∴∠DAB=∠DBA=45°,
    ∵∠DCM=∠DMC=45°,
    ∵∠CDM=∠ADB=90°,
    ∴∠ADC=∠BDM,
    ∵AD=DB,CD=DM,
    ∴△ADC≌△BDM(SAS),
    ∴AC=BM,
    ∵2CD2+CB2=CA2,CM2=DM2+CD2=2CD2,
    ∴CM2+CB2=BM2,
    ∴∠BCM=90°,
    ∴∠DCB=45°,
    ∴∠DAB+∠DCB=90°,
    ∴四边形ABCD是对余四边形.
    (3)如图③中,过点D作DH⊥x轴于H.

    ∵A(﹣1,0),B(3,0),C(1,2),
    ∴OA=1,OB=3,AB=4,AC=BC=,
    ∴AC2+BC2=AB2,
    ∴∠ACB=90°,
    ∴∠CBA=∠CAB=45°,
    ∵四边形ABCD是对余四边形,
    ∴∠ADC+∠ABC=90°,
    ∴∠ADC=45°,
    ∵∠AEC=90°+∠ABC=135°,
    ∴∠ADC+∠AEC=180°,
    ∴A,D,C,E四点共圆,
    ∴∠ACE=∠ADE,
    ∵∠CAE+∠ACE=∠CAE+∠EAB=45°,
    ∴∠EAB=∠ACE,
    ∴∠EAB=∠ADB,
    ∵∠ABE=∠DBA,
    ∴△ABE∽△DBA,
    ∴,

    ∴u=,
    设D(x,t),
    由(2)可知,BD2=2CD2+AD2,
    ∴(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2,
    整理得(x+1)2=4t﹣t2,
    在Rt△ADH中,AD=,
    ∴u==(0<t<4),
    即u=(0<t<4).
    【点睛】
    本题属于四边形综合题,考查了对余四边形的定义,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.
    2.(2020·江苏南通?中考真题)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.
    (1)如图①,若点P恰好在边BC上,连接AP,求的值;
    (2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.

    【答案】(1);(2)BF=3.
    【解析】
    【分析】
    (1)如图①中,取DE的中点M,连接PM.证明△POM∽△DCP,利用相似三角形的性质求解即可.
    (2)如图②中,过点P作GH∥BC交AB于G,交CD于H.设EG=x,则BG=4-x.证明△EGP∽△PHD,推出,推出PG=2EG=3x,DH=AG=4+x,在Rt△PHD中,由PH2+DH2=PD2,可得(3x)2+(4+x)2=122,求出x,再证明△EGP∽△EBF,利用相似三角形的性质求解即可.
    【详解】
    解:(1)如图①中,取DE的中点M,连接PM.

    ∵四边形ABCD是矩形,
    ∴∠BAD=∠C=90°,
    由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,
    在Rt△EPD中,∵EM=MD,
    ∴PM=EM=DM,
    ∴∠3=∠MPD,
    ∴∠1=∠3+∠MPD=2∠3,
    ∵∠ADP=2∠3,
    ∴∠1=∠ADP,
    ∵AD∥BC,
    ∴∠ADP=∠DPC,
    ∴∠1=∠DPC,
    ∵∠MOP=∠C=90°,
    ∴△POM∽△DCP,
    ∴,
    ∴.
    (2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x

    ∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,
    ∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,
    ∴∠EPG=∠PDH,
    ∴△EGP∽△PHD,
    ∴,
    ∴PG=2EG=3x,DH=AG=4+x,
    在Rt△PHD中,∵PH2+DH2=PD2,
    ∴(3x)2+(4+x)2=122,
    解得:x=(负值已经舍弃),
    ∴BG=4﹣=,
    在Rt△EGP中,GP=,
    ∵GH∥BC,
    ∴△EGP∽△EBF,
    ∴,
    ∴,
    ∴BF=3.
    【点睛】
    本题考查翻折变换,相似三角形的判定和性质,矩形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题.
    3.(2020·陕西中考真题)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.

    【答案】详见解析.
    【解析】
    【分析】
    利用已知先证明AB∥DE,进而根据平行四边形的定义:两组对边平行的四边形是平行四边形,即可得出结论.
    【详解】
    证明:∵DE=DC,
    ∴∠DEC=∠C.
    ∵∠B=∠C,
    ∴∠B=∠DEC,
    ∴AB∥DE,
    ∵AD∥BC,
    ∴四边形ABED是平行四边形.
    ∴AD=BE.

    【点睛】
    本题主要考查了平行四边形的判定和性质.解题的关键是熟练掌握平行四边形的判定定理和性质定理的运用.
    4.(2020·湖北荆门?中考真题)如图,中,,的平分线交于D,交的延长线于点E,交于点F.


    (1)若,求的度数;
    (2)若,求的长.
    【答案】(1);(2).
    【解析】
    【分析】
    (1)先根据等腰三角形的性质及角平分线的性质求出,,再根据垂直与外角的性质即可求出;
    (2)根据题意证明,再得到为等边三角形,故可得到,可根据三角函数的性质即可求出AF.
    【详解】
    (1)∵,,
    ∴.
    ∵平分,
    ∴,
    ∵,
    ∴,
    ∴.
    (2)∵,
    ∴,
    又,
    ∴,
    ∴,

    ∴,
    ∴,
    ∴,
    ∴为等边三角形,
    ∴,
    ∴,
    ∵,
    ∴,
    在中,.
    【点睛】
    此题主要考查解直角三角形,解题的关键是熟知等腰三角形、等边三角形的判定与性质、三角函数的应用.
    5.(2020·湖北黄冈?中考真题)已知:如图,在中,点是的中点,连接并延长,交的延长线于点,求证:.

    【答案】见解析
    【解析】
    【分析】
    通过证明即可得证.
    【详解】
    证明:∵点是的中点,

    在中,,

    在和中,



    【点睛】
    本题考查平行四边形的性质,全等三角形的判定与性质等内容,熟练运用平行四边形的性质及全等三角形的判定是解题的关键.
    6.(2020·江苏淮安?中考真题)如图,在平行四边形中,点、分别在、上,与相交于点,且.

    (1)求证:≌;
    (2)连接、,则四边形 (填“是”或“不是”)平行四边形.
    【答案】(1)证明过程见解析;(2)是,理由见解析;
    【解析】
    【分析】
    (1)根据平行四边形的对边平行可得到内错角相等,再根据已知条件可利用ASA得到全等;
    (2)由(1)可得到AF=EC,根据一组对边平行且相等的四边形式平行四边形即可得到答案;
    【详解】
    (1)∵四边形平行四边形,
    ∴AD∥BC,
    ∴,
    根据题可知,,
    在△AOF和△COE中,

    ∴≌.
    (2)如图所示,

    由(1)得≌,可得:

    又∵,
    ∴四边形AECF是平行四边形.
    【点睛】
    本题中主要考查了平行四边形的判定和性质,准确运用全等三角形的条件进行判断是解题的关键.
    7.(2020·江苏常州?中考真题)已知:如图,点A、B、C、D在一条直线上,.

    (1)求证:;
    (2)若,求的度数.
    【答案】(1)见解析;(2)60°
    【解析】
    【分析】
    (1)根据已知条件证明△ACE≌△BDF,即可得到结论;
    (2)根据全等三角形的性质得到∠D=∠ACE=80°,再利用三角形内角和定理求出结果.
    【详解】
    解:(1)∵AE∥BF,
    ∴∠A=∠DBF,
    ∵AB=CD,
    ∴AB+BC=CD+BC,即AC=BD,
    又∵AE=BF,
    ∴△ACE≌△BDF(SAS),
    ∴∠E=∠F;
    (2)∵△ACE≌△BDF,
    ∴∠D=∠ACE=80°,
    ∵∠A=40°,
    ∴∠E=180°-∠A-∠ACE=60°.
    【点睛】
    本题考查了全等三角形的判定和性质和三角形内角和,解题的关键是找出三角形全等的条件.
    8.(2020·江苏盐城?中考真题)如图,点是正方形,的中心.

    (1)用直尺和圆规在正方形内部作一点(异于点),使得(保留作图痕迹,不写作法)
    (2)连接求证:.
    【答案】(1)见解析;(2)见解析
    【解析】
    【分析】
    (1)作BC的垂直平分线即可求解;
    (2)根据题意证明即可求解.
    【详解】
    如图所示,点即为所求.

    连接
    由得:
    是正方形中心,

    在和中,



    【点睛】
    此题主要考查正方形的性质与证明,解题的关键是熟知正方形的性质、垂直平分线的作图及全等三角形的判定与性质.
    9.(2020·陕西中考真题)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)

    【答案】详见解析
    【解析】
    【分析】
    根据尺规作图法,作一个角等于已知角,在AC边上求作一点P,使∠PBC=45°即可.
    【详解】
    解:如图,点P即为所求.

    作法:(1)以点C为圆心,以任意长为半径画弧交AC于D,交BC于E,
    (2)以点B为圆心,以CD长为半径画弧,交BC于F,
    (3)以点F为圆心,以DE长为半径画弧,交前弧于点M,
    (3)连接BM,并延长BM与AC交于点P,则点P即为所求.

    【点睛】
    本题考查了作图——基本作图.解决本题的关键是掌握基本作图方法.
    10.(2020·吉林中考真题)如图,在中,,点在边上,且,过点作并截取,且点,在同侧,连接.

    求证:.
    【答案】证明见详解
    【解析】
    【分析】
    根据SAS即可证得.
    【详解】
    证明:∵,
    ∴∠A=∠EDB,
    在△ABC和△DEB中,

    ∴(SAS).
    【点睛】
    本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.
    11.(2020·吉林长春?中考真题)图①、图②、图③均是的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以为边画.

    要求:
    (1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;
    (2)三个图中所画的三角形的面积均不相等;
    (3)点在格点上.
    【答案】见详解(答案不唯一)
    【解析】
    【分析】
    因为点C在格点上,故可将直尺的一角与线段AB点A重合,直尺边长所在直线经过正方形网格左上角第一个格点,继而以点A为旋转中心,逆时针旋转直尺,当直尺边长所在直线与正方形格点相交时,确定点C的可能位置,顺次连接A、B、C三点,按照题目要求排除不符合条件的C点,作图完毕后可根据三角形面积公式判断其面积是否相等.
    【详解】
    经计算可得下图中:图①面积为;图②面积为1;图③面积为,面积不等符合题目要求(2),且符合题目要求(1)以及要求(3).
    故本题答案如下:

    【点睛】
    本题考查三角形的分类及其作图,难度较低,按照题目要求作图即可.
    12.(2020·甘肃金昌?中考真题)如图,在中,是边上一点,且.
    (1)尺规作图(保留作图痕迹,不写作法)
    ①作的角平分线交于点;
    ②作线段的垂直平分线交于点.
    (2)连接,直接写出线段和的数量关系及位置关系.

    【答案】(1)①作图见解析,②作图见解析;(2)
    【解析】
    【分析】
    (1)①根据角平分线的作图方法直接作图即可;②根据垂直平分线的作图方法直接作图即可;
    (2)根据等腰三角形的性质与垂直平分线的定义证明是的中位线,根据中位线的性质可得答案.
    【详解】
    解:(1)如图,①即为所求作的的角平分线,
    ②过的垂线是所求作的线段的垂直平分线.

    (2)如图,连接,
    平分

    由作图可知:
    是的中位线,


    【点睛】
    本题考查的是角平分线与垂直平分线的尺规作图,同时考查了三角形的中位线的性质,掌握以上知识是解题的关键.
    13.(2020·山东淄博?中考真题)已知:如图,E是▱ABCD的边BC延长线上的一点,且CE=BC.
    求证:△ABC≌△DCE.

    【答案】见解析
    【解析】
    【分析】
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,
    ∴∠B=∠DCE,
    在△ABC和△DCE中,

    ∴△ABC≌△DCE(SAS).
    由平行四边形的性质得出AB∥CD,AB=CD,由平行线的性质得出∠B=∠DCE,由SAS即可得出结论.本题考查了平行四边形的性质、全等三角形的判定与性质等知识;
    【点评】熟练掌握平行四边形的性质和全等三角形的判定方法是解题的关键.
    14.(2020·云南昆明?中考真题)如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.

    【答案】见解析
    【解析】
    【分析】
    根据角平分线的性质证明△BAC≌△DAE,即可得到结果;
    【详解】
    证明:∵AC是∠BAE的平分线,
    ∴∠BAC=∠DAE,
    ∵∠C=∠E,AB=AD.
    ∴△BAC≌△DAE(AAS),
    ∴BC=DE.
    【点睛】
    本题主要考查了三角形的全等判定,准确利用角平分线的性质是解题的关键.
    15.(2020·浙江台州?中考真题)如图,已知AB=AC,AD=AE,BD和CE相交于点O.
    (1)求证:△ABD≌△ACE;
    (2)判断△BOC的形状,并说明理由.

    【答案】(1)见解析;(2)等腰三角形,理由见解析.
    【解析】
    【分析】
    (1)由“SAS”可证△ABD≌△ACE;
    (2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得结论.
    【详解】
    证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,
    ∴△ABD≌△ACE(SAS);
    (2)△BOC是等腰三角形,
    理由如下:
    ∵△ABD≌△ACE,
    ∴∠ABD=∠ACE,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,
    ∴∠OBC=∠OCB,
    ∴BO=CO,
    ∴△BOC是等腰三角形.
    【点睛】
    本题考查了全等三角形的判定与性质,等腰三角形的判定,熟记相关定理是解题关键.
    16.(2020·湖北咸宁?中考真题)如图,在中,,点O在上,以为半径的半圆O交于点D,交于点E,过点D作半圆O的切线,交于点F.

    (1)求证:;
    (2)若,,,求半圆O的半径长.
    【答案】(1)见解析;(2)
    【解析】
    【分析】
    (1)连接OD,根据切线的性质得到∠BDF+∠ADO=90°,再结合∠ADO=∠OAD,推出∠BDF=∠B,即可;
    (2)过F作FG⊥BD于G,先利用三角函数求出BG=DG,再过点O作OH⊥AD于H,在△AOH中,求出AO即可.
    【详解】
    解:(1)连接OD,
    ∵DF和半圆相切,
    ∴OD⊥DF,
    ∴∠BDF+∠ADO=90°,
    ∵∠ADO=∠OAD,
    ∴∠OAD+∠BDF=90°,又∠C=90°,
    ∴∠OAD+∠B=90°,
    ∴∠BDF=∠B,
    ∴BF=DF;
    (2)过F作FG⊥BD于G,则GF垂直平分BD,
    ∵,
    ∴BF=DF=2,
    ∵,,∠C=90°,
    ∴AB=,
    ∴cos∠B==,
    ∴,解得:BG==DG,
    ∴AD=AB-BD=,
    过点O作OH⊥AD于H,
    ∴AH=DH=AD=,
    ∵cos∠BAC=,
    ∴AO=,
    即半圆O的半径长为.

    【点睛】
    本题考查了切线的性质,相似三角形的判定和性质,等腰三角形的判定和性质,解直角三角形,解题的关键是正确寻找相似三角形,学会添加常用辅助线,属于中考常考题型.
    17.(2020·河北中考真题)如图,点为中点,分别延长到点,到点,使.以点为圆心,分别以,为半径在上方作两个半圆.点为小半圆上任一点(不与点,重合),连接并延长交大半圆于点,连接,.

    (1)①求证:;
    ②写出∠1,∠2和三者间的数量关系,并说明理由.
    (2)若,当最大时,直接指出与小半圆的位置关系,并求此时(答案保留).
    【答案】(1)①见详解;②∠2=∠C+∠1;(2)与小半圆相切,.
    【解析】
    【分析】
    (1)①直接由已知即可得出AO=PO,∠AOE=∠POC,OE=OC,即可证明;
    ②由(1)得△AOE≌△POC,可得∠1=∠OPC,根据三角形外角的性质可得∠2=∠C+∠OPC,即可得出答案;
    (2)当最大时,可知此时与小半圆相切,可得CP⊥OP,然后根据,可得在Rt△POC中,∠C=30°,∠POC=60°,可得出∠EOD,即可求出S扇EOD.
    【详解】
    (1)①在△AOE和△POC中,
    ∴△AOE≌△POC;
    ②∠2=∠C+∠1,理由如下:
    由(1)得△AOE≌△POC,
    ∴∠1=∠OPC,
    根据三角形外角的性质可得∠2=∠C+∠OPC,
    ∴∠2=∠C+∠1;
    (2)在P点的运动过程中,只有CP与小圆相切时∠C有最大值,
    ∴当最大时,可知此时与小半圆相切,
    由此可得CP⊥OP,
    又∵,
    ∴可得在Rt△POC中,∠C=30°,∠POC=60°,
    ∴∠EOD=180°-∠POC=120°,
    ∴S扇EOD==.
    【点睛】
    本题考查了全等三角形的性质和判定,三角形的外角,切线的性质,扇形面积的计算,掌握知识点灵活运用是解题关键.
    18.(2020·湖北孝感?中考真题)如图,在中,点在的延长线上,点在的延长线上,满足.连接,分别与,交于点,.求证:.

    【答案】证明见解析.
    【解析】
    【分析】
    先根据平行四边形的性质可得,,再根据平行线的性质、邻补角的定义可得,,然后根据三角形全等的判定定理与性质即可得证.
    【详解】
    ∵四边形为平行四边形
    ∴,
    ∴,

    在和中,

    ∴.
    【点睛】
    本题考查了平行四边形的性质、平行线的性质、邻补角的定义、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质,正确找出全等三角形是解题关键.
    19.(2020·江苏淮安?中考真题)如图,三条笔直公路两两相交,交点分别为、、,测得,,千米,求、两点间的距离.(参考数据:,,结果精确到1千米).

    【答案】、两点间的距离约为11千米.
    【解析】
    【分析】
    如图(见解析),先根据直角三角形的性质、勾股定理可求出CD、AD的长,再根据等腰直角三角形的判定与性质可得BD的长,然后根据线段的和差即可得.
    【详解】
    如图,过点C作于点D
    在中,,千米
    (千米),(千米)
    在中,
    是等腰直角三角形
    千米
    (千米)
    答:、两点间的距离约为11千米.

    【点睛】
    本题考查了直角三角形的性质、等腰直角三角形的判定与性质等知识点,通过作辅助线,构造直角三角形是解题关键.
    20.(2020·江苏淮安?中考真题)如图,是圆的弦,是圆外一点,,交于点,交圆于点,且.

    (1)判断直线与圆的位置关系,并说明理由;
    (2)若,,求图中阴影部分的面积.
    【答案】(1)直线BC与圆O相切,理由见解析;(2)
    【解析】
    【分析】
    (1)连接OB,由等腰三角形的性质分别证出∠A=∠OBA,∠CPB=∠CBP,再利用直角三角形性质和对顶角可证得∠OBC=90º,即OB⊥BC,可判断直线BC与圆O相切;
    (2)易证得△CPD为等边三角形,则有∠OCB=60º,∠BOC=30º,用含30º角的直角三角形求得OA、BC的长,然后用公式求得△OBC的面积和扇形OBD的面积,相加即可解得阴影面积.
    【详解】
    (1)直线BC与圆O相切,理由为:
    连接OB,
    ∵OA=OB,
    ∴∠A=∠OBA,
    ∵CP=CB,
    ∴∠CPB=∠CBP,又∠APO=∠CPB
    ∴∠CBP=∠APO,
    ∵OA⊥OC,
    ∴∠A+∠APO=90º,
    ∴∠OBA+∠CBP=90º即∠OBC=90º,
    ∴OB⊥BC,
    ∴直线BC与圆O相切;
    (2)∵OA⊥OC,∠A=30º,OP=1
    ∴OA=,∠APO=60º即∠CPB=60º,
    ∵CP=CB,
    ∴△PCB为等边三角形,
    ∴∠PCB=60º,
    ∵∠OBC=90º,
    ∴∠BOD=30º,
    ∴BC=OB·tan30º=1,
    ∴==,
    答:图中阴影部分的面积为.

    【点睛】
    本题主要考查了等腰三角形的性质、直角三角形的性质、切线的判定定理、等边三角形的判定与性质、扇形的面积等知识,解答的关键是认真审题,结合图形,找到各知识点之间的联系,进而推理、探究、发现和计算.
    21.(2020·上海中考真题)在平面直角坐标系xOy中,直线y=﹣x+5与x轴、y轴分别交于点A、B(如图).抛物线y=ax2+bx(a≠0)经过点A.
    (1)求线段AB的长;
    (2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC=,求这条抛物线的表达式;
    (3)如果抛物线y=ax2+bx的顶点D位于△AOB内,求a的取值范围.

    【答案】(1)5;(2)y=﹣x2+x;(3)﹣<a<0.
    【解析】
    【分析】

    (1)先求出A,B坐标,即可得出结论;
    (2)设点C(m,-m+5),则BC=|m,进而求出点C(2,4),最后将点A,C代入抛物线解析式中,即可得出结论;
    (3)将点A坐标代入抛物线解析式中得出b=-10a,代入抛物线解析式中得出顶点D坐标为(5,-25a),即可得出结论.
    【详解】

    (1)针对于直线y=﹣x+5,
    令x=0,y=5,
    ∴B(0,5),
    令y=0,则﹣x+5=0,
    ∴x=10,
    ∴A(10,0),
    ∴AB==5;
    (2)设点C(m,﹣m+5).
    ∵B(0,5),
    ∴BC==|m|.
    ∵BC=,
    ∴|m|=,
    ∴m=±2.
    ∵点C在线段AB上,
    ∴m=2,
    ∴C(2,4),
    将点A(10,0),C(2,4)代入抛物线y=ax2+bx(a≠0)中,得,
    ∴,
    ∴抛物线y=﹣x2+x;
    (3)∵点A(10,0)在抛物线y=ax2+bx中,得100a+10b=0,
    ∴b=﹣10a,
    ∴抛物线的解析式为y=ax2﹣10ax=a(x﹣5)2﹣25a,
    ∴抛物线的顶点D坐标为(5,﹣25a),
    将x=5代入y=﹣x+5中,得y=﹣×5+5=,
    ∵顶点D位于△AOB内,
    ∴0<﹣25a<,
    ∴﹣<a<0.
    【点睛】

    此题是二次函数综合题,主要考查了待定系数法,两点间的距离公式,抛物线的顶点坐标的求法,求出点D的坐标是解本题的关键.
    22.(2020·黑龙江齐齐哈尔?中考真题)如图,AB为⊙O的直径,C、D为⊙O上的两个点,==,连接AD,过点D作DE⊥AC交AC的延长线于点E.

    (1)求证:DE是⊙O的切线.
    (2)若直径AB=6,求AD的长.
    【答案】(1)见解析;(2)3
    【解析】
    【分析】
    (1)连接OD,根据已知条件得到∠BOD=180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;
    (2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.
    【详解】
    (1)证明:连接OD,

    ∵,
    ∴∠BOD=180°=60°,
    ∵,
    ∴∠EAD=∠DAB=BOD=30°,
    ∵OA=OD,
    ∴∠ADO=∠DAB=30°,
    ∵DE⊥AC,
    ∴∠E=90°,
    ∴∠EAD+∠EDA=90°,
    ∴∠EDA=60°,
    ∴∠EDO=∠EDA+∠ADO=90°,
    ∴OD⊥DE,
    ∴DE是⊙O的切线;
    (2)解:连接BD,
    ∵AB为⊙O的直径,
    ∴∠ADB=90°,
    ∵∠DAB=30°,AB=6,
    ∴BD=AB=3,
    ∴AD==3.

    【点睛】
    本题考查了切线的证明,及线段长度的计算,熟知圆的性质及切线的证明方法,以及含30°角的直角三角形的特点是解题的关键.
    23.(2020·湖北宜昌?中考真题)如图,在四边形中,,过点B的与边分别交于E,F两点.,垂足为G,.连接.

    (1)若,试判断的形状,并说明理由;
    (2)若,求证:与相切于点A.
    【答案】(1)等腰直角三角形,理由见解析 (2)见解析
    【解析】
    【分析】
    (1)根据题目中已知信息,可知,有,所以,都是等腰直角三角形,得到,即可得出是等腰直角三角形;
    (2)通过,可以等到,有,又因为,可以知道E与点A重合,再证明即可.
    【详解】
    解:(1)是等腰直角三角形
    理由如下:




    ∴,都是等腰直角三角形



    ∴是等腰直角三角形

    (2)证明:








    ∴点E与点A重合
    以下有多种方法:
    方法一∵





    ∵是的半径
    ∴与相切于点A
    方法二∵,∴



    ∴G,A,O三点共线


    ∴与相切于点A.
    方法三:如图


    ∴与之间距离:
    延长交的延长线交于点





    ∴,
    ∴与相切于点

    ∴点与点重合
    ∴与相切于点.
    【点睛】
    (1)证明三角形形状需要找到边的关系以及角的大小,通过题目中的已知信息先判断出特殊三角形,再找到所求三角形与特殊三角形边与角的关系是解题的关键;
    (2)本题主要考查了全等三角形的性质以及如何求切线,通过三角形全等得到角的大小,从而可以证明点E与点A重合,再证明即可得与相切于点,其中证明点E与点A重合是解题的关键.
    24.(2020·湖北随州?中考真题)如图,某楼房顶部有一根天线,为了测量天线的高度,在地面上取同一条直线上的三点,,,在点处测得天线顶端的仰角为,从点走到点,测得米,从点测得天线底端的仰角为,已知,,在同一条垂直于地面的直线上,米.

    (1)求与之间的距离;
    (2)求天线的高度.(参考数据:,结果保留整数)
    【答案】(1)之间的距离为30米;(2)天线的高度约为27米.
    【解析】
    【分析】
    (1)根据题意,∠BAD=90°,∠BDA=45°,故AD=AB,已知CD=5,不难算出A与C之间的距离.
    (2)根据题意,在中,,利用三角函数可算出AE的长,又已知AB,故EB即可求解.
    【详解】
    (1)依题意可得,在中, ,
    米,
    米,米.
    即之间的距离为30米.
    (2)在中,,米,
    (米),
    米,米.
    由.并精确到整数可得米.
    即天线的高度约为27米.

    【点睛】
    (1)本题主要考查等腰直角三角形的性质,掌握等腰直角三角形的性质是解答本题的关键.
    (2)本题主要考查三角函数的灵活运用,正确运用三角函数是解答本题的关键.
    25.(2020·广东中考真题)已知关于,的方程组与的解相同.
    (1)求,的值;
    (2)若一个三角形的一条边的长为,另外两条边的长是关于的方程的解.试判断该三角形的形状,并说明理由.
    【答案】(1); (2)等腰直角三角形,理由见解析
    【解析】
    【分析】
    (1)关于x,y的方程组与的解相同.实际就是方程组
    的解,可求出方程组的解,进而确定a、b的值;
    (2)将a、b的值代入关于x的方程x2+ax+b=0,求出方程的解,再根据方程的两个解与为边长,判断三角形的形状.
    【详解】
    解:由题意列方程组:
    解得
    将,分别代入和
    解得,
    ∴,
    (2)
    解得
    这个三角形是等腰直角三角形
    理由如下:∵
    ∴该三角形是等腰直角三角形.
    【点睛】
    本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.
    26.(2020·广东中考真题)如图,在中,点,分别是、边上的点,,,与相交于点,求证:是等腰三角形.

    【答案】见解析
    【解析】
    【分析】
    先证明,得到,,进而得到,故可求解.
    【详解】
    证明:在和中




    又∵


    ∴是等腰三角形.
    【点睛】
    此题主要考查等腰三角形的判定,解题的关键是熟知全等三角形的判定与性质.
    27.(2020·四川内江?中考真题)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.
    (1)求证:AB=CD;
    (2)若AB=CF,∠B=40°,求∠D的度数.

    【答案】(1)AB=CD(2)70°
    【解析】
    【分析】
    (1)根据平行线的性质求出∠B=∠C,根据AAS推出△ABE≌△CDF,根据全等三角形的性质得出即可;
    (2)根据全等得出AB=CD,BE=CF,∠B=∠C,求出CF=CD,推出∠D=∠CFE,即可求出答案.
    【详解】
    (1)证明:∵AB∥CD,
    ∴∠B=∠C,
    在△ABE和△CDF中,
    ∠B=∠C,AE=DF ,∠A=∠D.
    ∴△AEB≌△DFC.
    ∴AB=CD.
    (2)∵AB=CD,
    AB=CF,
    ∴CD=CF,
    ∵∠B=∠C=40°,
    ∴∠D=(180°-40°)÷2=70°.
    【点睛】
    本题考查了全等三角形的性质和判定,平行线的性质,三角形内角和定理的应用,能根据全等三角形的判定求出△ABE≌△CDF是解此题的关键.
    28.(2020·四川内江?中考真题)如图,AB是⊙O的直径,C是⊙O上一点,于点D,过点C作⊙O 的切线,交OD的延长线于点E,连结BE.
    (1)求证:BE是⊙O的切线;
    (2)设OE交⊙O于点F,若,求线段EF的长;
    (3)在(2)的条件下,求阴影部分的面积.

    【答案】(1)见解析;(2)EF=4;(3)
    【解析】
    【分析】
    (1)连接OC,如图,根据垂径定理由OD⊥BC得到CD=BD,则OE为BC的垂直平分线,所以EB=EC,根据等腰三角形的性质得∠EBC=∠ECB,加上∠OBC=∠OCB,则∠OBE=∠OCE;再根据切线的性质得∠OCE=90°,所以∠OBE=90°,然后根据切线的判定定理得BE与⊙O相切;
    (2)设⊙O的半径为R,则OD=R-DF=R-2,OB=R,在Rt△OBD,利用勾股定理解得R=4,再利用含30º角的直角三角形边角关系可求得OE,利用EF=OE-OF即可解答;
    (3)利用(2)中可求得∠BOC=120º,然后利用代入数值即可求解.
    【详解】
    (1)证明:连接OC,如图,
    ∵OD⊥BC,
    ∴CD=BD,
    ∴OE为BC的垂直平分线,
    ∴EB=EC,
    ∴∠EBC=∠ECB,
    ∵OB=OC,
    ∴∠OBC=∠OCB,
    ∴∠OBC+∠EBC=∠OCB+∠ECB,即∠OBE=∠OCE,
    ∵CE为⊙O的切线,
    ∴OC⊥CE,
    ∴∠OCE=90°,
    ∴∠OBE=90°,
    ∴OB⊥BE,
    ∴BE与⊙O相切.
    (2)设⊙O的半径为R,则OD=R-DF=R-2,OB=R,
    在Rt△OBD中,BD=BC=
    ∵OD2+BD2=OB2,
    ∴,解得R=4,
    ∴OD=2,OB=4,
    ∴∠OBD=30°,
    ∴∠BOD=60°,
    ∴在Rt△OBE中,∠BEO=30º,OE=2OB=8,
    ∴EF=OE-OF=8-4=4,
    即EF=4;
    (3)由∠OCD=∠OBD=30º和OD⊥BC知:∠COD=∠BOD=60º,
    ∴∠BOC=120º,又BC=,OE=8,

    =
    ,

    【点睛】
    本题考查了切线的判定与性质、垂径定理、扇形面积的计算、含30º角的直角三角形边角关系、勾股定理等知识,熟练掌握每个知识点是解答的关键.
    29.(2020·江苏常州?中考真题)如图1,点B在线段上,Rt△≌Rt△,,,.

    (1)点F到直线的距离是_________;
    (2)固定△,将△绕点C按顺时针方向旋转30°,使得与重合,并停止旋转.
    ①请你在图1中用直尺和圆规画出线段经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;
    ②如图2,在旋转过程中,线段与交于点O,当时,求的长.
    【答案】(1)1;(2);(3)
    【解析】
    【分析】
    (1)根据直角三角形的性质和全等三角形的性质可得∠ACF=∠ECF=30°,即CF是∠ACB的平分线,然后根据角平分线的性质可得点F到直线的距离即为EF的长,于是可得答案;
    (2)①易知E点和F点的运动轨迹是分别以CF和CE为半径、圆心角为30°的圆弧,据此即可画出旋转后的平面图形;在图3中,先解Rt△CEF求出CF和CE的长,然后根据S阴影=(S△CEF+S扇形ACF)-(S△ACG+S扇形CEG)即可求出阴影面积;
    ②作EH⊥CF于点H,如图4,先解Rt△EFH求出FH和EH的长,进而可得CH的长,设OH=x,则CO和OE2都可以用含x的代数式表示,然后在Rt△BOC中根据勾股定理即可得出关于x的方程,解方程即可求出x的值,进一步即可求出结果.
    【详解】
    解:(1)∵,,∴∠ACB=60°,
    ∵Rt△≌Rt△,
    ∴∠ECF=∠BAC=30°,EF=BC=1,
    ∴∠ACF=30°,∴∠ACF=∠ECF=30°,
    ∴CF是∠ACB的平分线,
    ∴点F到直线的距离=EF=1;
    故答案为:1;
    (2)①线段经旋转运动所形成的平面图形如图3中的阴影所示:

    在Rt△CEF中,∵∠ECF=30°,EF=1,
    ∴CF=2,CE=,
    由旋转的性质可得:CF=CA=2,CE=CG=,∠ACG=∠ECF=30°,
    ∴S阴影=(S△CEF+S扇形ACF)-(S△ACG+S扇形CEG)=S扇形ACF-S扇形CEG=;
    故答案为:;
    ②作EH⊥CF于点H,如图4,
    在Rt△EFH中,∵∠F=60°,EF=1,
    ∴,
    ∴CH=,
    设OH=x,则,,
    ∵OB=OE,∴,
    在Rt△BOC中,∵,∴,
    解得:,
    ∴.

    【点睛】
    本题考查了旋转的性质和旋转作图、全等三角形的性质、角平分线的性质、扇形面积公式、勾股定理和解直角三角形等知识,涉及的知识点多,综合性较强,熟练掌握上述知识、灵活应用整体思想和方程思想是解题的关键.
    30.(2020·湖南长沙?中考真题)人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:
    已知:
    求作:的平分线
    做法:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N,
    (2)分别以点M,N为圆心,大于的长为半径画弧,两弧在的内部相交于点C
    (3)画射线OC,射线OC即为所求.

    请你根据提供的材料完成下面问题:
    (1)这种作已知角平分线的方法的依据是__________________(填序号).
    ① ② ③ ④
    (2)请你证明OC为的平分线.
    【答案】(1)①;(2)证明见解析
    【解析】
    【分析】
    (1)根据作图的过程知道:OM=ON,OC=OC,CM=CM,由“SSS”可以证得△EOC≌△DOC;
    (2)根据作图的过程知道:OM=ON,OC=OC,CM=CM,由全等三角形的判定定理SSS可以证得△EOC≌△DOC,从而得到OC为的平分线.
    【详解】
    (1)根据作图的过程知道:OM=ON,OC=OC,CM=CM,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC,从而得到OC为的平分线;
    故答案为:①;
    (2)如图,

    连接MC、NC.
    根据作图的过程知,
    在△MOC与△NOC中,

    ∴△MOC≌△NOC(SSS),
    ∠AOC=∠BOC,
    ∴OC为的平分线.
    【点睛】
    本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.
    31.(2020·江苏盐城?中考真题)如图,是的外接圆,是的直径,.

    (1)求证:是的切线;
    (2)若,垂足为交与点;求证:是等腰三角形.
    【答案】(1)见解析;(2)见解析
    【解析】
    【分析】
    (1)连接OC,由AB是圆O的直径得到∠BCA=90°,进一步得到∠A+∠B=90°,再根据已知条件,且∠A=∠ACO即可证明∠OCD=90°进而求解;
    (2)证明,再由DE⊥AB,得到∠A+∠AFE=90°,进而得到∠DCA=∠AFE=∠DFC,得到DC=DF,进而得到△DFC为等腰三角形.
    【详解】
    解:(1)证明:连接,



    为圆的直径,





    又点在圆上,
    是的切线.
    (2)







    是等腰三角形.
    【点睛】
    本题考查了圆的切线的判定定理,圆周角定理,等腰三角形的性质和判定等,熟练掌握性质或定理是解决此类题的关键.
    32.(2020·陕西中考真题)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.
    (1)求该抛物线的表达式;
    (2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.

    【答案】(1)y=x2+2x﹣3;(2)点P的坐标为(2,5)或(﹣4,5);点E的坐标为(﹣1,2)或(﹣1,8).
    【解析】
    【分析】
    (1)根据待定系数法,将点(3,12)和(﹣2,﹣3)代入抛物线表达式,即可求解;
    (2)在△AOC中,OA=OC=3,由题意:以P、D、E为顶点的三角形与△AOC全等可知PD=DE=3,再分点P在抛物线对称轴右侧、点P在抛物线对称轴的左侧两种情况,求解即可.
    【详解】
    解:(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式得
    ,解得,
    故抛物线的表达式为:y=x2+2x﹣3;
    (2)抛物线的对称轴为x=﹣1,令y=0,则x=﹣3或1,令x=0,则y=﹣3,
    故点A、B的坐标分别为(﹣3,0)、(1,0);点C(0,﹣3),
    故OA=OC=3,
    ∵∠PDE=∠AOC=90°,
    ∴当PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,
    设点P(m,n),当点P在抛物线对称轴右侧时,m﹣(﹣1)=3,解得:m=2,
    故n=22+2×2﹣5=5,故点P(2,5),
    故点E(﹣1,2)或(﹣1,8);
    当点P在抛物线对称轴的左侧时,由抛物线的对称性可得,点P(﹣4,5),此时点E坐标同上,
    综上,点P的坐标为(2,5)或(﹣4,5);点E的坐标为(﹣1,2)或(﹣1,8).
    【点睛】
    本题主要考查了二次函数与几何运用,涉及到三角形全等,掌握数形结合思想是解答关键,其中(2)需要分类求解,避免遗漏.
    33.(2020·陕西中考真题)如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.

    【答案】80m.
    【解析】
    【分析】
    过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,可得四边形AMEC和四边形AMFB均为矩形,可以证明△BFN≌△CEM,得NF=EM=49,进而可得商业大厦的高MN.
    【详解】
    解:如图,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,

    ∴∠CEF=∠BFE=90°,
    ∵CA⊥AM,NM⊥AM,
    ∴四边形AMEC和四边形AMFB均为矩形,
    ∴CE=BF,ME=AC,∠1=∠2,
    ∴△BFN≌△CEM(ASA),
    ∴NF=EM=31+18=49,
    由矩形性质可知:EF=CB=18,
    ∴MN=NF+EM﹣EF=49+49﹣18=80(m).
    答:商业大厦的高MN为80m.
    【点睛】
    本题主要考查了全等三角形的性质和判定,解决本题的关键是构造直角三角形和矩形,得出NF=EM=AC.
    34.(2020·山西中考真题)阅读与思考
    下面是小宇同学的数学日记,请仔细阅读并完成相应的任务.

    ×年×月×日 星期日
    没有直角尺也能作出直角
    今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线,现根据木板的情况,要过上的一点,作出的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?
    办法一:如图①,可利用一把有刻度的直尺在上量出,然后分别以,为圆心,以与为半径画圆弧,两弧相交于点,作直线,则必为.

    办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出,两点,然后把木棒斜放在木板上,使点与点重合,用铅笔在木板上将点对应的位置标记为点,保持点不动,将木棒绕点旋转,使点落在上,在木板上将点对应的位置标记为点.然后将延长,在延长线上截取线段,得到点,作直线,则.

    我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?
    ……

    任务:
    (1)填空;“办法一”依据的一个数学定理是_____________________________________;
    (2)根据“办法二”的操作过程,证明;
    (3)①尺规作图:请在图③的木板上,过点作出的垂线(在木板上保留作图痕迹,不写作法);
    ②说明你的作法依据的数学定理或基本事实(写出一个即可)
    【答案】(1)勾股定理的逆定理;(2)详见解析;(3)①详见解析;②答案不唯一,详见解析
    【解析】
    【分析】
    (1)利用说明△DCE是直角三角形,说明,进而得出利用的原理是勾股定理逆定理即可;
    (2)由作图的方法可以得出:,,得出,,利用三角形内角和得出,即,说明垂直即可;
    (3)①以点为圆心,任意长为半径画弧,与有两个交点,分别以这两个交点为圆心,以大于这两个交点之间的距离的一半为半径画弧,这两段弧交于一点,连接即可;
    ②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上,即可说明垂直.
    【详解】
    (1)勾股定理的逆定理(或如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形);
    (2)证明:由作图方法可知:,,
    ,.
    又,



    即.
    (3)解:①如图,直线即为所求;


    图③
    ②答案不唯一,如:三边分别相等的两个三角形全等(或);等腰三角形顶角的平分线、底边上的高、底边上的中线重合(或等腰三角形“三线合一”);到一条线段两个端点距离相等的点,在这条线段的垂直平分线上等.
    【点睛】
    本题主要考查了垂直的判定,熟练掌握说明垂直的方法是解决本题的关键.
    35.(2020·四川宜宾?中考真题)如图,在三角形ABC中,点D是BC上的中点,连接AD并延长到点E,使,连接CE.
    (1)求证:
    (2)若的面积为5,求的面积.

    【答案】(1)详见解析;(2)10.
    【解析】
    【分析】

    (1)根据中点定义、对顶角相等以及已知条件运用SAS即可证明;
    (2)先根据三角形中点的性质和全等三角形的性质得到、,再结合以及解答即可.
    【详解】

    证明:(1)∵D是BC的中点,
    ∴BD=CD
    在△ABD和△CED中,

    所以;
    (2)∵在△ABC中,D 是BC的中点





    答:三角形ACE的面积为10.
    【点睛】

    本题考查了全等三角形的判定与性质、三角形中位线的性质等知识,其中掌握全等三角形的判定与性质是解答本题的关键.
    36.(2020·黑龙江穆棱?朝鲜族学校中考真题)等腰三角形ABC中,AB=AC=4,∠BAC=45º,以AC为腰作等腰直角三角形ACD,∠CAD为90º,请画出图形,并直接写出点B到CD的距离.
    【答案】画出图形见解析;点B到CD的距离为2或.
    【解析】
    【分析】
    根据题目描述可以作出两个图形,利用等腰直角三角形的性质分别进行求解即可.
    【详解】
    本题有两种情况:
    (1)如图,

    ∵是等腰直角三角形,,
    ∴,
    ∵,
    ∴,
    ∴点B到CD的距离等于点A到CD的距离,
    过点A作,
    ∵,
    ∴,
    ∴点B到CD的距离为2;
    (2)如图:

    ∵是等腰直角三角形,,
    ∴,
    ∵,
    ∴,
    ∴点B到CD的距离即BE的长,
    ∵,
    ∴,
    ∴,即点B到CD的距离为.
    【点睛】
    本题考查等腰直角三角形的性质,根据题目描述作出两个图形是解题的关键.
    37.(2020·黑龙江穆棱?朝鲜族学校中考真题)∆ABC中,点D在直线AB上.点E在平面内,点F在BC的延长线上,∠E=∠BDC,AE=CD,∠EAB+∠DCF=180º.

    (1)如图①,求证AD+BC=BE;
    (2)如图②、图③,请分别写出线段AD,BC,BE之间的数量关系,不需要证明;
    (3)若BE⊥BC,tan∠BCD=,CD=10,则AD=______.
    【答案】(1)见解析;(2)图②结论:BC-AD = BE,图③结论:AD-BC = BE;(3)14-6或 2+6.
    【解析】
    【分析】
    (1)证明∠EAB=∠BCD,用ASA证明△EAB≌△DCB,可得AD+BC=BE;
    (2)利用(1)的解题思路,证明△EAB≌△DCB,即可得到图②的结论BC-AD = BE;图③的结论AD-BC = BE;
    (3)利用(2)的结论,过点D作BC边长的垂线,构造直角三角形,结合tan∠BCD=,计算相应边的长度,即可得到AD的值.
    【详解】
    (1)证明:∵∠EAB+∠DCF=1800,∠BCD+∠DCF=1800,∴∠EAB=∠BCD,
    ∵∠E=∠BDC,AE=CD,∴△EAB≌△DCB,∴BE=BD, AB=BC,
    ∴AD+BC=AD+AB=BD=BE.
    (2)图②结论:BC-AD = BE,
    证明如下:∵∠EAB+∠DCF=1800,∠BCD+∠DCF=1800,∴∠EAB=∠BCD,
    ∵∠E=∠BDC,AE=CD,∴△EAB≌△DCB,∴BE=BD, AB=BC,
    ∴BA-AD=BC-AD= BE,即BC-AD=BE
    图③结论:AD-BC = BE.
    证明如下:∵∠EAB+∠DCF=1800,∠BCD+∠DCF=1800,∴∠EAB=∠BCD,
    ∵∠E=∠BDC,AE=CD,∴△EAB≌△DCB,∴BE=BD, AB=BC,
    ∴AD-AB=AD-BC= BD=BE,即AD-AB=BE
    (3)如图②所示,作于G
    由(2)知△EAB≌△DCB,∴


    在中,CD=10,,∴
    在中,,


    如图③所示,作于H
    由(2)知△EAB≌△DCB,∴



    在中,CD=10,,∴
    在中,,


    综上所述:AD的长度为14-6或 2+6.
    【点睛】
    本题考查了由图形变化引起的类比探究,快速确定全等三角形,并准确利用全等三角形的性质是解题的关键.
    38.(2020·湖北黄石?中考真题)如图,.

    (1)求的度数;
    (2)若,求证:.
    【答案】(1)∠DAE=30°;(2)见详解.
    【解析】
    【分析】
    (1)根据AB∥DE,得出∠E=∠CAB=40°,再根据∠DAB=70°,即可求出∠DAE;
    (2)证明△DAE≌△CBA,即可证明AD=BC.
    【详解】
    (1)∵AB∥DE,
    ∴∠E=∠CAB=40°,
    ∵∠DAB=70°,
    ∴∠DAE=∠DAB-∠CAB=30°;
    (2)由(1)可得∠DAE=∠B=30°,
    又∵AE=AB,∠E=∠CAB=40°,
    ∴△DAE≌△CBA(ASA),
    ∴AD=BC.
    【点睛】
    本题考查了平行线的性质,全等三角形的判定和性质,求出∠DAE的度数是解题关键.
    39.(2020·青海中考真题)如图,在中,.
    (1)尺规作图:作的外接圆;作的角平分线交于点D,连接AD.(不写作法,保留作图痕迹)
    (2)若AC =6,BC =8,求AD的长.


    【答案】(1)见解析;(2)
    【解析】
    【分析】
    (1)根据外接圆,角平分线的作法作图即可;
    (2)连接AD,OD,根据CD平分,得°,根据圆周角与圆心角的关系得到°,在中计算AB,在中,计算AD.
    【详解】
    (1)作图如下:

    (2)连接AD,OD,如图所示

    由(1)知:平分,且°
    ∴°
    ∴°
    在中,,
    ∴,即
    在中,
    【点睛】
    本题考查了三角形的外接圆,角平分线,以及利用圆周角与圆心角的关系,及勾股定理计算线段长度的方法,熟知以上方法是解题的关键.
    40.(2020·青海中考真题)某市为了加快5G网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点A测得发射塔顶端P点的仰角是45°,向前走60米到达B点测得P点的仰角是60°,测得发射塔底部Q点的仰角是30°.请你帮小军计算出信号发射塔PQ的高度.(结果精确到0.1 米,)

    【答案】94.6米
    【解析】
    【分析】
    先根据题意得出AC=PC,BQ=PQ,CQ=BQ,设BQ=PQ=x,则CQ=BQ=x,根据勾股定理可得BC=x,根据AB+BC=PQ+QC即可得出关于x的方程求解即可.
    【详解】
    ∵∠PAC=45°,∠PCA=90°,
    ∴AC=PC,
    ∵∠PBC=60°,∠QBC=30°,∠PCA=90°,
    ∴∠BPQ=∠PBQ=30°,
    ∴BQ=PQ,CQ=BQ,
    设BQ=PQ=x,则CQ=BQ=x,
    根据勾股定理可得BC==x,
    ∴AB+BC=PQ+QC
    即60+x=x+x
    解得:x=60+=60+20×1.732=94.64≈94.6,
    ∴PQ的高度为94.6米.
    【点睛】
    本题考查了等腰三角形的性质,勾股定理,含30度角的直角三角形的性质,找出等量关系是解题关键.
    41.(2020·青海中考真题)如图,已知AB是的直径,直线BC与相切于点B,过点A作AD//OC交于点D,连接CD.
    (1)求证:CD是的切线.
    (2)若,直径,求线段BC的长.

    【答案】(1)证明见解析;(2).
    【解析】
    【分析】
    (1)如图(见解析),先根据等腰三角形的性质可得,又根据平行线的性质可得,从而可得,再根据圆的切线的性质可得,然后根据三角形全等的判定定理与性质可得,最后根据圆的切线的判定即可得证;
    (2)如图(见解析),先根据圆周角定理得出,再根据勾股定理可得BD的长,然后根据相似三角形的判定与性质即可得.
    【详解】
    (1)如图,连接OD,则




    直线BC与相切于点B

    在和中,


    又是的半径
    是的切线;
    (2)如图,连接BD
    由圆周角定理得:


    在和中,

    ,即
    解得.

    【点睛】
    本题考查了圆周角定理、圆的切线的判定与性质、三角形全等的判定定理与性质、相似三角形的判定与性质等知识点,较难的是题(2),通过作辅助线,构造相似三角形是解题关键.
    42.(2020·广东广州?中考真题)如图,平面直角坐标系中,的边在轴上,对角线,交于点,函数的图象经过点和点.

    (1)求的值和点的坐标;
    (2)求的周长.
    【答案】(1)k=12,M(6,2);(2)28
    【解析】
    【分析】
    (1)将点A(3,4)代入中求出k的值,作AD⊥x轴于点D,ME⊥x轴于点E,证明△MEC∽△ADC,得到,求出ME=2,代入即可求出点M的坐标;
    (2)根据勾股定理求出OA=5,根据点A、M的坐标求出DE,即可得到OC的长度,由此求出答案.
    【详解】
    (1)将点A(3,4)代入中,得k=,
    ∵四边形OABC是平行四边形,
    ∴MA=MC,
    作AD⊥x轴于点D,ME⊥x轴于点E,
    ∴ME∥AD,
    ∴△MEC∽△ADC,
    ∴,
    ∴ME=2,
    将y=2代入中,得x=6,
    ∴点M的坐标为(6,2);

    (2)∵A(3,4),
    ∴OD=3,AD=4,
    ∴,
    ∵A(3,4),M(6,2),
    ∴DE=6-3=3,
    ∴CD=2DE=6,
    ∴OC=3+6=9,
    ∴的周长=2(OA+OC)=28.
    【点睛】
    此题考查平行四边形的性质,待定系数法求反比例函数的解析式,求函数图象上点的坐标,勾股定理,相似三角形的判定及性质.
    43.(2020·广东广州?中考真题)如图,,,.求的度数.

    【答案】75°.
    【解析】
    【分析】
    由三角形的内角和定理求出∠DCA=75°,再证明△ABC≌△ADC,即可得到答案.
    【详解】
    ∵,,
    ∴∠DCA=75°,
    ∵,,AC=AC,
    ∴△ABC≌△ADC,
    ∴∠BCA=∠DCA=75°.
    【点睛】
    此题考查三角形的内角和定理,全等三角形的判定及性质,这是一道比较基础的三角形题.
    44.(2020·广西玉林?中考真题)如图,四边形ABCD中,对角线AC与BD交于点O,且.
    (1)求证:四边形ABCD是正方形;
    (2)若H是AB上的一点(H与A,B不重合),连接DH,将线段DH绕点H顺时针旋转90度,得到线段HE,过点E分别作BC及AB的延长线的垂线,垂足分别是F,G,设四边形BGEF的面积为,以HB,BC为邻边的矩形面积为,且,当时,求AH的长;

    【答案】(1)证明见解析;(2).
    【解析】
    【分析】

    (1)由题根据可得对角线相等且互相平分,可得四边形ABCD是矩形,又因为在中,利用勾股定理逆定理可得出为等腰直角三角形,可得,所以也是等腰直角三角形,可得,所以得出四边形ABCD是正方形;
    (2)根据题意,易证得,可得,设,则,,可得,则,令,即:,解方程即可得出的长.
    【详解】

    解:(1)依题意可得:

    四边形为平行四边形;
    又,

    四边形为矩形;
    又在中,,且三边满足

    为等腰直角三角形;
    ,
    ,
    ,
    ,
    四边形为正方形;
    即:四边形为正方形.
    (2)由题可得:,




    在与中


    设,则,
    可得:,,
    令,可得,
    解得:,(舍去).
    即.
    【点睛】

    本题考查正方形的判定以及与正方形相关的几何证明.在证明正方形的时候必须先证明四边形是矩形或者菱形,然后得出正方形;如果题中涉及到边之间的关系是或倍的关系,则利用勾股定理逆定理验证是否是等腰直角三角形;如果遇到直角比较多的地方,注意观察题中是否有一线三垂直,要积累和熟练应用这个全等模型.
    45.(2020·广西玉林?中考真题)如图,AB是圆O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB与圆O交于点F,在CD上取一点E,使得EF=EC.
    (1)求证:EF是圆O的切线;
    (2)若D是OA的中点,AB=4,求CF的长.

    【答案】(1)见解析;(2)
    【解析】
    【分析】
    (1)连接OF和AF,证明∠GFE=∠AGD,进而可证明∠OFE=90°后即可求解;
    (2)先由AB=CD=4,BD=3,在Rt△BCD中结合勾股定理求出BC,再证明△ABF∽△CBD,由对应边成比例求出BF的长,最后用BC减去BF就是所求的CF的长.
    【详解】
    解:(1)连接OF和AF,设AF与DC相交于点G,如下图所示:

    ∵OA=OF,
    ∴∠A=∠OFA,
    ∵AB为圆O的直径,∴∠AFB=∠AFC=90°,
    ∴∠C+∠CGF=90°,∠GFE+∠EFC=90°
    又EC=EF,∴∠C=∠EFC,
    ∴∠CGF=∠GFE,
    又∠CGF=∠AGD,
    ∴∠GFE=∠AGD
    ∴∠OFE=∠OFA+∠GFE=∠A+∠AGD=180°-∠ADG=180°-90°=90°,
    ∴OF⊥EF,
    ∴EF是圆O的切线.
    (2)如下图所示,

    ∵D是OA的中点,且AB=4,
    ∴DO=1,BD=BO+DO=3,
    又AB=CD=4,
    ∴在Rt△BCD中,BC²=BD²+CD²=3²+4²=5²,
    ∴BC=5,
    又∠BDC=∠BFA=90°,且∠B=∠B,
    ∴△ABF∽△CBD,
    ∴,代入数据后得:,
    ∴,
    ∴,
    故答案为:.
    【点睛】
    本题考查了圆周角定理、圆的切线的判定定理、等腰三角形的性质、相似三角形的判定和性质、勾股定理等知识,熟练掌握其定理及性质是解决此类题的关键.
    46.(2020·内蒙古呼和浩特?中考真题)如图,正方形,G是边上任意一点(不与B、C重合),于点E,,且交于点F.

    (1)求证:;
    (2)四边形是否可能是平行四边形,如果可能请指出此时点G的位置,如不可能请说明理由.
    【答案】(1)见解析;(2)不可能,理由见解析
    【解析】
    【分析】
    (1)证明△ABF≌△DAE,从而得到AF=DE,AE=BF,可得结果;
    (2)若要四边形是平行四边形,则DE=BF,则∠BAF=45°,再证明∠BAF≠45°即可.
    【详解】
    解:(1)证明:∵正方形,
    ∴AB=AD,∠BAF+∠DAE=90°,
    ∵DE⊥AG,
    ∴∠DAE+∠ADE=90°,
    ∴∠ADE=∠BAF,
    又∵,
    ∴∠BFA=90°=∠AED,
    ∴△ABF≌△DAE(AAS),
    ∴AF=DE,AE=BF,
    ∴;
    (2)不可能,理由是:
    如图,若要四边形是平行四边形,
    已知DE∥BF,则当DE=BF时,四边形BFDE为平行四边形,
    ∵DE=AF,
    ∴BF=AF,即此时∠BAF=45°,
    而点G不与B和C重合,
    ∴∠BAF≠45°,矛盾,
    ∴四边形不能是平行四边形.

    【点睛】
    本题考查了全等三角形的判定和性质,正方形的性质,平行四边形的性质,解题的关键是找到三角形全等的条件.
    47.(2020·内蒙古呼和浩特?中考真题)如图,一艘船由A港沿北偏东65°方向航行到B港,然后再沿北偏西42°方向航行至C港,已知C港在A港北偏东20°方向.

    (1)直接写出的度数;
    (2)求A、C两港之间的距离.(结果用含非特殊角的三角函数及根式表示即可)
    【答案】(1)62°;(2)(+)km
    【解析】
    【分析】
    (1)根据两直线平行,内错角相等即可得出答案;
    (2)由题意得,∠CAB=65°-20°=45°,∠ACB=42°+20°=62°,AB=38,过B作BE⊥AC于E,解直角三角形即可得到答案.
    【详解】
    解:(1)如图,由题意得:
    ∠ACB=20°+42°=62°;
    (2)由题意得,∠CAB=65°-20°=45°,∠ACB=42°+20°=62°,AB=38,
    过B作BE⊥AC于E,如图所示:
    ∴∠AEB=∠CEB=90°,
    在Rt△ABE中,∵∠EAB=45°,
    ∴△ABE是等腰直角三角形,
    ∵AB=38,
    ∴AE=BE=AB=,
    在Rt△CBE中,∵∠ACB=62°,tan∠ACB=,
    ∴CE==,
    ∴AC=AE+CE=+,
    ∴A,C两港之间的距离为(+)km.

    【点睛】
    本题考查了解直角三角形的应用,方向角问题,等腰直角三角形的判定与性质等知识;熟练掌握解直角三角形,作出辅助线构造直角三角形是解题的关键.
    48.(2020·贵州毕节?中考真题)如图(1),大正方形的面积可以表示为,同时大正方形的面积也可以表示成两个小正方形面积与两个长方形的面积之和,即.同一图形(大正方形)的面积,用两种不同的方法求得的结果应该相等,从而验证了完全平方公式:.把这种“同一图形的面积,用两种不同的方法求出的结果相等,从而构建等式,根据等式解决相关问题”的方法称为“面积法”

    (1)用上述“面积法”,通过如图(2)中图形的面积关系,直接写出一个多项式进行因式分解的等式:_______;


    (2)如图(3),中,,,,是斜边边上的高.用上述“面积法”求的长;


    (3)如图(4),等腰中,,点为底边上任意一点,,,,垂足分别为点,,,连接,用上述“面积法”,求证:.


    【答案】(1);(2);(3)见解析
    【解析】
    【分析】
    (1)大长方形的面积为一个正方形的面积与三个小长方形面积之和即,同时大长方形的面积也可以为,列出等量关系即可;
    (2)由勾股定理求出AB,然后根据,代入数值解之即可.
    (3)由和三角形面积公式即可得证.
    【详解】
    (1)如图(2),大长方形的面积为一个小正方形的面积与三个小长方形面积之和,即,同时大长方形的面积也可以为,
    故答案为:;
    (2)如图(3)中,,,,
    ∴,
    ∵,
    ∴;
    (3)如图(4),
    ∵,,,垂足分别为点,,,
    ∴,
    ∴,
    ∵AB=AC,
    ∴CH=OM+ON
    即.
    【点睛】
    本题考查了因式分解的几何背景、图形的拆拼前后的面积相等、类比法等,解答的关键是根据已知条件和图形特点,利用拆拼前后的面积相等通过分析、推理和计算.
    49.(2020·湖北荆州?中考真题)如图矩形ABCD中,AB=20,点E是BC上一点,将沿着AE折叠,点B刚好落在CD边上的点G处,点F在DG上,将沿着AF折叠,点D刚好落在AG上点H处,此时.
    (1)求证:
    (2)求AD的长;
    (3)求的值.

    【答案】(1)见解析;(2)12;(3)
    【解析】
    【分析】
    (1)由矩形的性质得出∠B=∠D=∠C=90°,由折叠的性质得出∠AGE=∠B=90°,∠AHF=∠D=90°,证得∠EGC=∠GFH,则可得出结论;
    (2)由面积关系可得出GH:AH=2:3,由折叠的性质得出AG=AB=GH+AH=20,求出GH=8,AH=12,则可得出答案;
    (3)由勾股定理求出DG=16,设DF=FH=x,则GF=16-x,由勾股定理得出方程,解出x=6,由锐角三角函数的定义可得出答案.
    【详解】
    (1)证明:因为四边形ABCD是矩形
    所以





    (2)解:




    (3)解:在直角三角形ADG中,

    由折叠对称性知,



    解得:x=6,
    所以:HF=6
    在直角三角形GHF中,

    【点睛】
    本题考查了矩形的性质,翻折变换,锐角三角函数,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.
    50.(2020·湖北荆州?中考真题)如图,将绕点B顺时针旋转60度得到,点C的对应点E恰好落在AB的延长线上,连接AD.
    (1)求证:;
    (2)若AB=4,BC=1,求A,C两点旋转所经过的路径长之和.


    【答案】(1)见解析;(2)
    【解析】
    【分析】
    (1)先利用旋转的性质证明△ABD为等边三角形,则可证,即再根据平行线的判定证明即可.
    (2)利用弧长公式分别计算路径,相加即可求解.
    【详解】
    (1)证明:由旋转性质得:
    是等边三角形
    所以

    ∴;
    (2)依题意得:AB=BD=4,BC=BE=1,
    所以A,C两点经过的路径长之和为.
    【点睛】
    本题考查了旋转的性质、等边三角形的判定与性质、平行线的判定、弧长公式等知识,熟练掌握这些知识点之间的联系及弧长公式是解答的关键.
    51.(2020·湖南益阳?中考真题)如图,是的半径,过点作的切线,且,,分别交于点,,求证:

    【答案】见解析
    【解析】
    【分析】
    首先得出,推出OA=OB,再利用OA-OC=OB-OD得出结果即可.
    【详解】
    解:∵AB是⊙O的切线,
    ∴,
    ∵MA=MB,OM=OM,
    ∴,
    ∴OA=OB,
    ∵OC,OD都是⊙O的半径,
    ∴OC=OD,
    ∴OA-OC=OB-OD,
    即AC=BD.
    【点睛】
    本题考查了切线的性质及全等三角形的判定,解题的关键是熟练掌握三角形全等的判定.
    52.(2020·吉林中考真题)能够完全重合的平行四边形纸片和按图①方式摆放,其中,.点,分别在边,上,与相交于点.
    (探究)求证:四边形是菱形.
    (操作一)固定图①中的平行四边形纸片,将平行四边形纸片绕着点顺时针旋转一定的角度,使点与点重合,如图②,则这两张平行四边形纸片未重叠部分图形的周长和为______.

    (操作二)四边形纸片绕着点继续顺时针旋转一定的角度,使点与点重合,连接,,如图③若,则四边形的面积为______.
    【答案】探究:证明见解析;操作一:56;操作二:72.
    【解析】
    【分析】

    探究:先根据平行四边形的性质可得,再根据平行四边形的判定可得四边形是平行四边形,然后根据菱形的判定即可得证;
    操作一:先根据菱形的性质得出,再根据三角形全等的判定定理与性质可得,然后根据全等三角形的性质、三角形的周长公式即可得;
    操作二:先根据平行四边形的性质、等腰三角形的判定可得是等腰三角形,且平分,再根据等腰三角形的三线合一可得,,然后利用正弦三角函数可求出DN的长,从而可得DG的长,最后根据矩形的判定可得四边形是矩形,据此利用矩形的面积公式即可得.
    【详解】

    探究:四边形和都是平行四边形
    ,即
    四边形是平行四边形

    平行四边形是菱形;
    操作一:如图,设AE与DF相交于点H,AB与FG相交于点M
    四边形和是两个完全重合的平行四边形

    在和中,

    ,和的周长相等
    同理可得:
    、、、的周长均相等

    的周长为
    则这两张平行四边形纸片未重叠部分图形的周长和为
    故答案为:56;

    操作二:如图,设AB与DG相交于点N
    四边形和是两个完全重合的平行四边形

    是等腰三角形,且平分


    在中,,即
    解得


    四边形是平行四边形
    ,即
    平行四边形是矩形
    则四边形的面积为
    故答案为:72.

    【点睛】

    本题考查了平行四边形的判定与性质、三角形全等的判定与性质、菱形的判定、矩形的判定、正弦三角函数等知识点,熟记并灵活运用各判定定理与性质是解题关键.
    53.(2020·广西中考真题)如图,点在一条直线上,.

    (1)求证:;
    (2)连接,求证:四边形是平行四边形.
    【答案】(1)见解析;(2)见解析.
    【解析】
    【分析】
    (1)先证明,再利用SSS证明;
    (2)根据“一组对边平行且相等的四边形是平行四边形”证明四边形是平行四边形即可.
    【详解】
    证明:




    证明:



    四边形是平行四边形.
    【点睛】
    本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.
    54.(2020·吉林长春?中考真题)如图,在中,是对角线、的交点,,,垂足分别为点、.

    (1)求证:.
    (2)若,,求的值.
    【答案】(1)见解析1;(2)
    【解析】
    【分析】
    (1)根据题意由平行四边形性质得,由ASA证得,即可得出结论;
    (2)根据题意由(1)得OE=OF,则OE=2,在Rt△OEB中,由三角函数定义即可得出结果.
    【详解】
    解:(1)证明:在中,
    ∵,


    又∵


    (2)∵,



    在中,,.
    【点睛】
    本题考查平行四边形的性质、全等三角形的判定与性质、三角函数定义等知识;熟练掌握平行四边形的性质与全等三角形的判定是解题的关键.
    55.(2020·四川雅安?中考真题)如图,四边形内接于圆,,对角线平分.
    (1)求证:是等边三角形;
    (2)过点作交的延长线于点,若,求的面积.

    【答案】(1)见解析;(2);
    【解析】
    【分析】
    (1)根据三个内角相等的三角形是等边三角形即可判断;
    (2)过点A作AE⊥CD,垂足为点E,过点B作BF⊥AC,垂足为点F.根据S四边形ABCD=S△ABC+S△ACD,分别求出△ABC,△ACD的面积,即可求得四边形ABCD的面积,然后通过证得△EAB≌△DCB(AAS),即可求得△BDE的面积=四边形ABCD的面积=.
    【详解】
    解:(1)证明:∵四边形ABCD内接于⊙O.
    ∴∠ABC+∠ADC=180°,
    ∵∠ABC=60°,
    ∴∠ADC=120°,
    ∵DB平分∠ADC,
    ∴∠ADB=∠CDB=60°,
    ∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°,
    ∴∠ABC=∠BCA=∠BAC,
    ∴△ABC是等边三角形;

    (2)过点A作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.
    ∴∠AMD=90°
    ∵∠ADC=120°,
    ∴∠ADM=60°,
    ∴∠DAM=30°,
    ∴DM=AD=1,AM=,
    ∵CD=3,
    ∴CM=CD+DE=1+3=4,
    ∴S△ACD=CD-AM=×3×=,
    在Rt△AMC中,∠AMD=90°,
    ∴AC=,
    ∵△ABC是等边三角形,
    ∴AB=BC=AC=,
    ∴BN=,
    ∴S△ABC=××=,
    ∴四边形ABCD的面积=+=,
    ∵BE∥CD,
    ∴∠E+∠ADC=180°,
    ∵∠ADC=120°,
    ∴∠E=60°,
    ∴∠E=BDC,
    ∵四边形ABCD内接于⊙O,
    ∴∠EAB=∠BCD,
    在△EAB和△DCB中,

    ∴△EAB≌△DCB(AAS),
    ∴△BDE的面积=四边形ABCD的面积=.
    【点睛】
    本题考查圆内接四边形的性质,等边三角形的判定和性质,勾股定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    56.(2020·甘肃金昌?中考真题)如图,圆是的外接圆,其切线与直径的延长线相交于点,且.
    (1)求的度数;
    (2)若,求圆的半径.

    【答案】(1)的度数为;(2)圆O的半径为2.
    【解析】
    【分析】
    (1)如图(见解析),设,先根据等腰三角形的性质得出,再根据圆的性质可得,从而可得,然后根据圆的切线的性质可得,又根据三角形的内角和定理可求出x的值,从而可得的度数,最后根据圆周角定理即可得;
    (2)如图(见解析),设圆O的半径为,先根据圆周角定理得出,再根据直角三角形的性质可得,从而可得,然后在中,利用勾股定理求解即可得.
    【详解】
    (1)如图,连接OA





    AE是圆O的切线
    ,即

    在中,由三角形的内角和定理得:

    解得

    则由圆周角定理得:
    故的度数为;
    (2)如图,连接AD
    设圆O的半径为,则


    BD是圆O的直径

    由(1)可知,
    则在中,

    在中,由勾股定理得:,即
    解得或(不符题意,舍去)
    则圆O的半径为2.

    【点睛】
    本题考查了圆周角定理、圆的切线的性质、等腰三角形的性质、勾股定理等知识点,较难的是题(2),通过作辅助线,利用圆周角定理是解题关键.
    57.(2020·甘肃金昌?中考真题)如图,点,分别在正方形的边,上,且,把绕点顺时针旋转得到.
    (1)求证:≌.
    (2)若,,求正方形的边长.

    【答案】(1)证明见解析;(2)正方形的边长为6.
    【解析】
    【分析】
    (1)先根据旋转的性质可得,再根据正方形的性质、角的和差可得,然后根据三角形全等的判定定理即可得证;
    (2)设正方形的边长为x,从而可得,再根据旋转的性质可得,从而可得,然后根据三角形全等的性质可得,最后在中,利用勾股定理即可得.
    【详解】
    (1)由旋转的性质得:
    四边形ABCD是正方形
    ,即
    ,即


    在和中,

    (2)设正方形的边长为x,则


    由旋转的性质得:

    由(1)已证:

    又四边形ABCD是正方形

    则在中,,即
    解得或(不符题意,舍去)
    故正方形的边长为6.
    【点睛】
    本题考查了正方形的性质、旋转的性质、三角形全等的判定定理与性质、勾股定理等知识点,较难的是题(2),熟练掌握旋转的性质与正方形的性质是解题关键.
    58.(2020·黑龙江大庆?中考真题)如图,,CD为两个建筑物,两建筑物底部之间的水平地面上有一点.从建筑物的顶点测得点的俯角为45°,从建筑物的顶点测得点的俯角为75°,测得建筑物的顶点的俯角为30°.若已知建筑物的高度为20米,求两建筑物顶点、之间的距离(结果精确到,参考数据:,)

    【答案】两建筑物顶点、之间的距离为35米.
    【解析】
    【分析】
    如图(见解析),先根据俯角的定义得出,,,,再根据平行线的性质、角的和差可得,,然后根据等腰直角三角形的判定与性质可得,又在中,解直角三角形可得,最后根据等腰直角三角形的判定与性质即可得.
    【详解】
    如图,过点A作于点N
    由题意得:,,,


    ,米
    是等腰直角三角形
    (米)
    在中,,即
    解得(米)
    在中,
    是等腰直角三角形
    (米)
    答:两建筑物顶点、之间的距离为35米.

    【点睛】
    本题考查了俯角的定义、平行线的性质、等腰直角三角形的判定与性质、解直角三角形的实际应用等知识点,通过作辅助线,构造直角三角形是解题关键.
    59.(2020·黑龙江大庆?中考真题)如图,在矩形中,为对角线的中点,过点作直线分别与矩形的边,交于,两点,连接,.

    (1)求证:四边形为平行四边形;
    (2)若,,且,求的长
    【答案】(1)证明见解析;(2)
    【解析】
    【分析】

    (1)通过证明△AOM和△CON全等,可以得到,又因为,所以可以证明四边形为平行四边形;
    (2)根据,从而可以证明平行四边形是菱形,得到,再使用勾股定理计算出BN的长度,从而可以得到DM的长度.
    【详解】

    (1)证明:∵四边形ABCD是矩形
    ∴,

    在△AOM和△CON中

    ∴△AOM△CON

    又∵
    ∴四边形为平行四边形.
    (2)∵四边形为平行四边形

    ∴平行四边形是菱形


    设BN的长度为x
    在Rt△ABN中,,





    【点睛】

    (1)本题主要考查了如何证明平行四边形,明确一组对边平行且相等的四边形是平行四边形是解题的关键;(2)本题主要考查了菱形的证明以及勾股定理的应用,知晓对角线互相垂直的平行四边形是菱形是解题的关键.
    60.(2020·山东烟台?中考真题)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.
    (问题解决)
    (1)如图1,若点D在边BC上,求证:CE+CF=CD;
    (类比探究)
    (2)如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.

    【答案】(1)见解析;(2)FC=CD+CE,见解析
    【解析】
    【分析】
    (1)在CD上截取CH=CE,易证△CEH是等边三角形,得出EH=EC=CH,证明△DEH≌△FEC(SAS),得出DH=CF,即可得出结论;
    (2)过D作DG∥AB,交AC的延长线于点G,由平行线的性质易证∠GDC=∠DGC=60°,得出△GCD为等边三角形,则DG=CD=CG,证明△EGD≌△FCD(SAS),得出EG=FC,即可得出FC=CD+CE.
    【详解】
    (1)证明:在CD上截取CH=CE,如图1所示:
    ∵△ABC是等边三角形,
    ∴∠ECH=60°,
    ∴△CEH是等边三角形,
    ∴EH=EC=CH,∠CEH=60°,
    ∵△DEF是等边三角形,
    ∴DE=FE,∠DEF=60°,
    ∴∠DEH+∠HEF=∠FEC+∠HEF=60°,
    ∴∠DEH=∠FEC,
    在△DEH和△FEC中,

    ∴△DEH≌△FEC(SAS),
    ∴DH=CF,
    ∴CD=CH+DH=CE+CF,
    ∴CE+CF=CD;
    (2)解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:
    ∵△ABC是等边三角形,
    ∴∠A=∠B=60°,
    过D作DG∥AB,交AC的延长线于点G,如图2所示:
    ∵GD∥AB,
    ∴∠GDC=∠B=60°,∠DGC=∠A=60°,
    ∴∠GDC=∠DGC=60°,
    ∴△GCD为等边三角形,
    ∴DG=CD=CG,∠GDC=60°,
    ∵△EDF为等边三角形,
    ∴ED=DF,∠EDF=∠GDC=60°,
    ∴∠EDG=∠FDC,
    在△EGD和△FCD中,

    ∴△EGD≌△FCD(SAS),
    ∴EG=FC,
    ∴FC=EG=CG+CE=CD+CE.

    【点睛】
    本题考查了等边三角形的判定与性质、全等三角形的判定与性质、平行线的性质等知识;作辅助线构建等边三角形是解题的关键.
    61.(2020·四川凉山?中考真题)如图,点P、Q分别是等边边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发.


    (1)如图1,连接AQ、CP求证:
    (2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,的大小是否变化?若变化,请说明理由;若不变,求出它的度数
    (3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
    【答案】(1)证明见解析;(2)不变;60°;(3)不变;120°.
    【解析】
    【分析】

    (1)根据点P、点Q以相同的速度,同时从点A、点B出发,可得BQ=AP,结合等边三角形的性质证全等即可;
    (2)由(1)中全等可得∠CPA=∠AQB,再由三角形内角和定理即可求得∠AMP的度数,再根据对顶角相等可得的度数;
    (3)先证出,可得∠Q=∠P,再由对顶角相等,进而得出∠QMC=∠CBP=120°.
    【详解】

    解:(1)证明:∵三角形ABC为等边三角形,
    ∴AB=AC,∠ABC=∠CAB=60°,
    ∵点P、点Q以相同的速度,同时从点A、点B出发,
    ∴BQ=AP,
    在△ABQ与△CAB中,

    ∴.
    (2)角度不变,60°,理由如下:

    ∴∠CPA=∠AQB,
    在△AMP中,
    ∠AMP=180°-(∠MAP+∠CPA)=180°-(∠MAP+∠AQB)=∠ABC=60°,
    ∴∠QMC=∠AMP=60°,
    故∠QMC的度数不变,度数为60°.
    (3)角度不变,120°,理由如下:
    当点P、Q在AB、BC的延长线上运动时,
    有AP=BQ,∴BP=CQ
    ∵∠ABC=∠BCA=60°,
    ∴∠CBP=∠ACQ=120°,


    ∴∠Q=∠P,
    ∵∠QCM=∠BCP,
    ∴∠QMC=∠CBP=120°,
    故∠QMC的度数不变,度数为120°.
    【点睛】

    本题考查等边三角形的性质、全等三角形的判定和性质、三角形内角和定理,灵活运用等边三角形的性质证全等是解题的关键.
    62.(2020·辽宁沈阳?中考真题)如图,在中,,点为边上一点,以点为圆心,长为半径的圆与边相交于点,连接,当为的切线时.

    (1)求证:;
    (2)若的半径为1,请直接写出的长为__________.
    【答案】(1)证明见解析;(2).
    【解析】
    【分析】
    (1)如图(见解析),先根据圆的切线的性质可得,从而可得,再根据直角三角形的性质可得,然后根据等腰三角形的性质可得,从而可得,最后根据等腰三角形的定义即可得证;
    (2)先根据等腰三角形的性质可得,再根据三角形的外角性质可得,从而可得,然后利用直角三角形的性质可得,从而可得,最后在中,利用正切三角函数求解即可得.
    【详解】
    (1)如图,连接
    ∵是的切线








    ∴;
    (2)


    由(1)知,



    解得

    的半径为1

    在中,,即
    解得
    故答案为:.

    【点睛】
    本题考查了圆的切线的性质、正切三角函数、等腰三角形的性质等知识点,通过作辅助线,利用圆的切线的性质构造直角三角形是解题关键.
    63.(2020·江苏淮安?中考真题)(初步尝试)
    (1)如图①,在三角形纸片中,,将折叠,使点与点重合,折痕为,则与的数量关系为 ;

    (思考说理)
    (2)如图②,在三角形纸片中,,,将折叠,使点与点重合,折痕为,求的值.

    (拓展延伸)
    (3)如图③,在三角形纸片中,,,,将沿过顶点的直线折叠,使点落在边上的点处,折痕为.
    ①求线段的长;
    ②若点是边的中点,点为线段上的一个动点,将沿折叠得到,点的对应点为点,与交于点,求的取值范围.

    【答案】(1);(2);(3)①;②.
    【解析】
    【分析】
    (1)先根据折叠的性质可得,再根据平行线的判定可得,然后根据三角形中位线的判定与性质即可得;
    (2)先根据等腰三角形的性质可得,再根据折叠的性质可得,从而可得,然后根据相似三角形的判定与性质可得,从而可求出BM的长,最后根据线段的和差可得AM的长,由此即可得出答案;
    (3)①先根据折叠的性质可得,从而可得,再根据等腰三角形的定义可得,然后根据相似三角形的判定与性质可得,从而可得BM、AM、CM的长,最后代入求解即可得;
    ②先根据折叠的性质、线段的和差求出,的长,设,从而可得,再根据相似三角形的判定与性质可得,然后根据x的取值范围即可得.
    【详解】
    (1),理由如下:
    由折叠的性质得:



    是的中位线
    点M是AB的中点

    故答案为:;
    (2)

    由折叠的性质得:
    ,即
    在和中,

    ,即
    解得


    (3)①由折叠的性质得:
    ,即


    在和中,

    ,即
    解得



    解得;
    ②如图,由折叠的性质可知,,,

    点O是边的中点


    设,则
    点为线段上的一个动点
    ,其中当点P与点重合时,;当点P与点O重合时,


    ,即
    在和中,




    则.

    【点睛】
    本题考查了折叠的性质、三角形的中位线定理、等腰三角形的定义、相似三角形的判定与性质等知识点,较难的是题(3)②,正确设立未知数,并找出两个相似三角形是解题关键.
    64.(2020·上海中考真题)如图,在直角梯形ABCD中,,∠DAB=90°,AB=8,CD=5,BC=3.
    (1)求梯形ABCD的面积;
    (2)联结BD,求∠DBC的正切值.

    【答案】(1)39;(2).
    【解析】
    【分析】
    (1)过C作CE⊥AB于E,推出四边形ADCE是矩形,得到AD=CE,AE=CD=5,根据勾股定理得到,即可求出梯形的面积;
    (2) 过C作CH⊥BD于H,根据相似三角形的性质得到,根据勾股定理得到,即可求解.
    【详解】
    解:(1)过C作CE⊥AB于E,如下图所示:

    ∵ABDC,∠DAB=90°,∴∠D=90°,
    ∴∠A=∠D=∠AEC=90°,
    ∴四边形ADCE是矩形,
    ∴AD=CE,AE=CD=5,
    ∴BE=AB﹣AE=3.
    ∵BC=3,∴CE==6,
    ∴梯形ABCD的面积=×(5+8)×6=39,
    故答案为:39.
    (2)过C作CH⊥BD于H,如下图所示:

    ∵CDAB,∴∠CDB=∠ABD.
    ∵∠CHD=∠A=90°,
    ∴△CDH∽△DBA,∴,
    ∵BD===10,
    ∴,∴CH=3,
    ∴BH===6,
    ∴∠DBC的正切值===.
    故答案为:.
    【点睛】
    本题考查了直角梯形,解直角三角形,相似三角形的判定和性质,矩形的判定和性质,正确的作出辅助线是解题的关键.
    65.(2020·四川内江?中考真题)如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.
    (1)连结CQ,求证:;
    (2)若,求的值;
    (3)求证:.

    【答案】(1)见解析;(2) ;(3)见解析
    【解析】
    【分析】
    (1)由旋转知△PBQ为等腰直角三角形,得到PB=QB,∠PBQ=90°,进而证明△APB≌△CQB即可;
    (2)设AP=x,则AC=4x,PC=3x,由(1)知CQ=AP=x,又△ABC为等腰直角三角形,所以BC=,PQ=,再证明△BQE∽△BCQ,由此求出BE,进而求出CE:BC的值;
    (3)在CE上截取CG,并使CG=FA,证明△PFA≌△QGC,进而得到PF=QG,然后再证明∠QGE=∠QEG即可得到QG=EQ,进而求解.
    【详解】
    解:∵四边形ABCD为正方形,
    ∴AB=BC,∠ABC=90°,
    ∵BP绕点B顺时针旋转到BQ,
    ∴BP=BQ,∠PBQ=90°,
    ∴∠ABC-∠PBC=∠PBQ-∠PBC,
    ∴∠ABP=∠CBQ,
    在△APB和△CQB中,

    ∴△APB≌△CQB(SAS),
    ∴AP=CQ.
    (2) 设AP=x,则AC=4x,PC=3x,由(1)知CQ=AP=x,
    △ABC为等腰直角三角形,∴BC=,
    在Rt△PCQ中,由勾股定理有:,
    且△PBQ为等腰直角三角形,
    ∴,
    又∠BCQ=∠BAP=45°,∠BQE=45°,
    ∴∠BCQ=∠BQE=45°,且∠CBQ=∠CBQ,
    ∴△BQE∽△BCQ,
    ∴,代入数据:,
    ∴BE=,∴CE=BC-BE=,
    ∴,
    故答案为:.
    (3) 在CE上截取CG,并使CG=FA,如图所示:

    ∵∠FAP=∠GCQ=45°,
    且由(1)知AP=CQ,且截取CG=FA,
    故有△PFA≌△QGC(SAS),
    ∴PF=QG,∠PFA=∠CGQ,
    又∵∠DFP=180°-∠PFA,∠QGE=180°-∠CGQ,
    ∴∠DFP=∠QGE,
    ∵DABC,
    ∴∠DFP=∠CEQ,
    ∴∠QGE=∠CEQ,
    ∴△QGE为等腰三角形,
    ∴GQ=QE,
    故PF=QE.
    【点睛】
    本题考查了正方形的性质、旋转的性质、三角形全等的判定和性质、相似三角形判定和性质的综合,具有一定的综合性,本题第(3)问关键是能想到在CE上截取CG,并使CG=FA这条辅助线.
    66.(2020·四川内江?中考真题)如图,抛物线经过A(-1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.
    (1)求抛物线所对应的函数表达式;
    (2)当的面积为3时,求点D的坐标;
    (3)过点D作,垂足为点E,是否存在点D,使得中的某个角等于的2倍?若存在,求点D的横坐标;若不存在,请说明理由.

    【答案】(1);(2)(3,2)或(1,3);(3)存在,2或.
    【解析】
    【分析】
    (1)根据点A、B、C的坐标,利用待定系数法即可求出抛物线的解析式;
    (2)根据三角形面积公式可求与BC平行的经过点D的y轴上点M的坐标,再根据待定系数法可求DM的解析式,再联立抛物线可求点D的坐标;
    (3)分∠DCE=2∠ABC及∠CDE=2∠ABC两种情况考虑:①当∠DCE=2∠ABC时,取点F(0,−2),连接BF,则CD∥BF,由点B,F的坐标,利用待定系数法可求出直线BF,CD的解析式,联立直线CD及抛物线的解析式组成方程组,通过解方程组可求出点D的坐标;②当∠CDE=2∠ABC时,过点C作CN⊥BF于点N,交OB于H.作点N关于BC的对称点P,连接NP交BC于点Q,由△OCH∽△OBF求出H点坐标,利用待定系数法求出直线CN的解析式,联立直线BF及直线CN成方程组,通过解方程组可求出点N的坐标,利用对称的性质可求出点P的坐标,由点C、P的坐标,利用待定系数法可求出直线CP的解析式,将直线CP的解析式代入抛物线解析式中可得出关于x的一元二次方程,解之取其非零值可得出点D的横坐标.依此即可得解.
    【详解】
    解答:解:(1)将A(−1,0)、B(4,0)、C(0,2)代入y=ax2+bx+c得:

    解得:
    故抛物线的解析式为.
    (2)如图2,过点D作DM∥BC,交y轴于点M,设点M的坐标为(0,m),使得△BCM的面积为3,

    CM=3×2÷4=1.5,
    则m=2+1.5=,
    M(0,)
    ∵点B(4,0),C(0,2),
    ∴直线BC的解析式为y=− x+2,
    ∴DM的解析式为y=− x+,
    联立抛物线解析式,
    解得,.
    ∴点D的坐标为(3,2)或(1,3).
    (3)分两种情况考虑:
    ①当∠DCE=2∠ABC时,取点F(0,−2),连接BF,如图3所示.

    ∵OC=OF,OB⊥CF,
    ∴∠ABC=∠ABF,
    ∴∠CBF=2∠ABC.
    ∵∠DCB=2∠ABC,
    ∴∠DCB=∠CBF,
    ∴CD∥BF.
    ∵点B(4,0),F(0,−2),
    ∴直线BF的解析式为y=x−2,
    ∴直线CD的解析式为y=x+2.
    联立直线CD及抛物线的解析式成方程组得:,
    解得:(舍去),,
    ∴点D的坐标为(2,3);
    ②当∠CDE=2∠ABC时,过点C作CN⊥BF于点N,交OB于H.作点N关于BC的对称点P,连接NP交BC于点Q,如图4所示.

    ∵∠OCH=90°−∠OHC,∠OBF=90°−∠BHN,
    ∠OHC=∠BHN,
    ∴∠OCH=∠OBF.
    在△OCH与△OBF中

    ∴△OCH∽△OBF,
    ∴,即,
    ∴OH=1,H(1,0).
    设直线CN的解析式为y=kx+n(k≠0),
    ∵C(0,2),H(1,0),
    ∴,解得,
    ∴直线CN的解析式为y=−2x+2.
    连接直线BF及直线CN成方程组得:

    解得:,
    ∴点N的坐标为().
    ∵点B(4,0),C(0,2),
    ∴直线BC的解析式为y=− x+2.
    ∵NP⊥BC,且点N(),
    ∴直线NP的解析式为y=2x−.
    联立直线BC及直线NP成方程组得:

    解得:,
    ∴点Q的坐标为().
    ∵点N(),点N,P关于BC对称,
    ∴点P的坐标为().
    ∵点C(0,2),P(),
    ∴直线CP的解析式为y=x+2.
    将y=x+2代入整理,得:11x2−29x=0,
    解得:x1=0(舍去),x2=,
    ∴点D的横坐标为.
    综上所述:存在点D,使得△CDE的某个角恰好等于∠ABC的2倍,点D的横坐标为2或.
    【点睛】
    本题是二次函数综合题,考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理、等腰三角形的性质、平行线的判定与性质、相似三角形的判定与性质、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线的解析式;(2)根据三角形面积公式和待定系数法求出点D的坐标;(3)分∠DCE=2∠ABC及∠CDE=2∠ABC两种情况求出点D的横坐标.
    67.(2020·辽宁抚顺?中考真题)如图,射线和射线相交于点,(),且.点是射线上的动点(点不与点和点重合).作射线,并在射线上取一点,使,连接,.
    (1)如图①,当点在线段上,时,请直接写出的度数;

    (2)如图②,当点在线段上,时,请写出线段,,之间的数量关系,并说明理由;

    (3)当,时,请直接写出的值.
    【答案】(1);(2),理由见解析;(3)或
    【解析】
    【分析】
    (1)根据等腰直角三角形的性质求解得∠ACB=45,证明A、B、E、C四点共圆,利用圆周角定理即可求解;
    (2)在上截取,连接,过点作于点,利用“SAS”证得△ABF△CBE,求得,根据三角函数的定义即可求解;
    (3)分D在线段CB上和D在CB延长线上两种情况讨论,利用(2)的方法及结论即可求解.
    【详解】
    (1)连接AC,如图:

    ∵∠ABC=90,AB=CB,
    ∴∠ACB=∠CAB=45,
    ∵∠AEC=90,又∠ABC=90,
    ∴A、B、E、C四点共圆,
    根据圆周角定理:∠AEB=∠ACB=45;
    (2),理由如下:
    在上截取,连接,过点作于点.

    ∵,
    ∴A、B、E、C四点共圆,
    根据圆周角定理:,
    在△ABF和△CBE中,

    ∴,
    ∴,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∵于点,
    ∴,
    ∴在中,

    ∴,
    ∵,,
    ∴;
    (3)当D在线段CB上时,如图:

    ∵,
    ∴设BH=,则AH=,
    由(2)得:,
    ∴BF=BE=,FH=EH=,
    ∴AF=CE=AH-FH=(3-),
    ∴;
    当D在CB延长线上时,
    在上截取,连接,过点作于点.如图:


    同理:设BH=,则AH=,
    同理得:,
    ∴BF=BE=,FH=EH=,
    ∴AF=CE=AH+FH=(3+),
    ∴;
    综上,的值为:或.
    【点睛】
    本题考查了圆周角定理,全等三角形的判定和性质,含30度角的直角三角形的性质,解直角三角形的应用,作出辅助线构建全等三角形是解题的关键.
    68.(2020·湖北恩施?中考真题)如图,是的直径,直线与相切于点,直线与相切于点,点(异于点)在上,点在上,且,延长与相交于点E,连接并延长交于点.

    (1)求证:是的切线;
    (2)求证:;
    (3)如图,连接并延长与分别相交于点、,连接.若,,求.

    【答案】(1)见详解;(2)见详解;(3)
    【解析】
    【分析】

    (1)连接OD,根据等边对等角可知:∠CAD=∠CDA,∠OAD=∠ODA,再根据切线的性质可知∠CAO=∠CAD+∠OAD=∠CDA+∠ODA=90°=∠ODC,由切线的判定定理可得结论;
    (2)连接BD,根据等边对等角可知∠ODB=∠OBD,再根据切线的性质可知∠ODE=∠OBE=90°,由等量减等量差相等得∠EDB=∠EBD,再根据等角对等边得到ED=EB,然后根据平行线的性质及对顶角相等可得∠EDF=∠EFD,推出DE=EF,由此得出结论;
    (3)过E点作EL⊥AM于L,根据勾股定理可求出BE的长,即可求出tan∠BOE的值,再利用倍角公式即可求出tan∠BHE的值.
    【详解】

    (1)连接OD,
    ∵,
    ∴∠CAD=∠CDA,
    ∵OA=OD
    ∴∠OAD =∠ODA,
    ∵直线与相切于点,
    ∴∠CAO=∠CAD+∠OAD=90°
    ∴∠ODC=∠CDA+∠ODA=90°
    ∴CE是的切线;

    (2)连接BD
    ∵OD=OB
    ∴∠ODB=∠OBD,
    ∵CE是的切线,BF是的切线,
    ∴∠OBD=∠ODE=90°
    ∴∠EDB=∠EBD
    ∴ED=EB
    ∵AM⊥AB,BN⊥AB
    ∴AM∥BN
    ∴∠CAD=∠BFD
    ∵∠CAD=∠CDA=∠EDF
    ∴∠BFD=∠EDF
    ∴EF=ED
    ∴BE=EF
    (3)过E点作EL⊥AM于L,则四边形ABEL是矩形,
    设BE=x,则CL=4-x,CE=4+X
    ∴(4+x)2=(4-x)2+62
    解得:x=

    ∵∠BOE=2∠BHE

    解得:tan∠BHE=或-3(-3不和题意舍去)
    ∴tan∠BHE=

    【点睛】

    本题主要考查了切线的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,三角函数/,勾股定理等知识,熟练掌握这些知识点并能熟练应用是解题的关键.
    69.(2020·湖南长沙?中考真题)如图,为的直径,C为上的一点,AD与过点C的直线互相垂直,垂足为D,AC平分.
    (1)求证:DC为的切线;
    (2)若,求的半径.

    【答案】(1)详见解析;(2)2
    【解析】
    【分析】
    (1)连接OC,利用角平分线的性质及同圆半径相等的性质求出∠DAC=∠OCA,得到AD∥OC,即可得到OC⊥CD得到结论;
    (2)连接BC,先求出,得到∠CAB=∠DAC=30°,AC=2CD=,再根据为的直径得到∠ACB=90°,再利用三角函数求出AB.
    【详解】
    (1)连接OC,
    ∵OA=OC,
    ∴∠OAC=∠OCA,
    ∵AC平分,
    ∴∠DAC=∠OAC,
    ∴∠DAC=∠OCA,
    ∴AD∥OC,
    ∴∠ADC+∠OCD=180°,
    ∵AD⊥CD,
    ∴∠ADC=90°,
    ∴∠OCD=90°,
    ∴OC⊥CD,
    ∴DC为的切线;

    (2)连接BC,
    在Rt△ACD中,∠ADC=90°,,
    ∴,
    ∴∠DAC=30°,
    ∴∠CAB=∠DAC=30°,AC=2CD=,
    ∵AB是的直径,
    ∴∠ACB=90°,
    ∴AB=,
    ∴的半径为2.

    【点睛】
    此题考查角平分线的性质定理,圆的切线的判定定理,圆周角定理,锐角三角函数,直角三角形30°角的性质,正确连接辅助线解题是此题的关键.
    70.(2020·江苏徐州?中考真题)如图,在平面直角坐标系中,函数的图像交轴于点、,交轴于点,它的对称轴交轴于点.过点作轴交抛物线于点,连接并延长交轴于点,交抛物线于点.直线交于点,交抛物线于点,连接、.

    备用图
    (1)点的坐标为:______;
    (2)当是直角三角形时,求的值;
    (3)与有怎样的位置关系?请说明理由.
    【答案】(1)(1,0);(2) 或;(3)平行,理由见解析
    【解析】
    【分析】
    (1)根据二次函数的对称轴为,代入即可求出E点坐标;
    (2)将ED、AF的解析式用的代数式表示,然后由DE解析式令y=0求出F点坐标,由AF解析式令y=求出H点坐标,再根据△HEF是直角三角形分哪个顶点为直角顶点进行讨论,由勾股定理求解即可;
    (3)直线DE和抛物线联立方程组求出G点坐标,直线AF和抛物线联立方程组求出K点坐标,最后计算直线GK的和直线HE的相等即可求解.
    【详解】
    解:(1)由题意可知,抛物线的对称轴为,
    ∴E点的坐标为(1,0),
    故答案为(1,0).
    (2)由题意知,C点坐标为(0,3a),C和D点关于对称轴对称,∴D坐标为(2,3a),
    设直线DE的解析式为y=kx+m,代入E(1,0)和D(2,3a),
    即,解得,
    ∴直线DE的解析式为y=3ax-3a,
    令y=0,∴F(0,-3a),
    令中,即:,
    解得,∴A(-1,0),
    设直线AF的解析式为y=bx+t,代入A(-1,0),F(0,-3a),
    即,解得,
    ∴直线AF的解析式为y=-3ax-3a,
    令y=-3ax-3a中y=3a,解得H点坐标(-2,3a),
    ∴H(-2,3a),E(1,0),F(0,-3a)
    故EF²=(1-0)²+(0+3a)²=1+9a²,
    EH²=(1+2)²+(0-3a)²=9+9a²,
    FH²=(0+2)²+(-3a-3a)²=36a²+4,
    ∵△EFH为直角三角形,∴分类讨论谁是直角顶角,
    情况一:∠E为直角顶角时,则EF²+EH²=FH²,
    即:1+9a²+9+9a²=36a²+4,解得:a=,又a>0,故a=;
    情况二:∠F为直角顶角时,则EF²+FH²=EH²,
    即:1+9a²+36a²+4=9+9a²,解得:a=,又a>0,故a=;
    情况三:∠H为直角顶角时,则FH²+EH²=EF²,
    即:36a²+4+9+9a²=1+9a²,此时无解;
    ∴综上所述,a的值为或;
    故答案为:或;
    (3)联立直线DF与抛物线的解析式:
    ,整理得:,
    解得,,∴G点坐标为(-3,-12a),
    同理,联立直线AF与抛物线的解析式:
    ,整理得:,
    解得,,∴K点坐标为(6,-21a),
    ∴直线GK的,
    直线HE的,
    即直线GK的k值与直线HE的k值相同,
    ∴GK与HE平行.
    故答案为:与有怎样的位置关系是平行.
    【点睛】
    本题考查了二次函数的图像及性质,二次函数与一次函数的交点坐标的求法,一次函数的解析式,直角三角形的性质等知识点,熟练掌握二次函数的性质,学会联立方程组求函数的交点坐标是解决本题的关键.
    71.(2020·江苏徐州?中考真题)我们知道:如图①,点把线段分成两部分,如果.那么称点为线段的黄金分割点.它们的比值为.

    (1)在图①中,若,则的长为_____;
    (2)如图②,用边长为的正方形纸片进行如下操作:对折正方形得折痕,连接,将折叠到上,点对应点,得折痕.试说明是的黄金分割点;
    (3)如图③,小明进一步探究:在边长为的正方形的边上任取点,连接,作,交于点,延长、交于点.他发现当与满足某种关系时、恰好分别是、的黄金分割点.请猜想小明的发现,并说明理由.
    【答案】(1);(2)见解析;(3)当PB=BC时,、恰好分别是、的黄金分割点,理由见解析
    【解析】
    【分析】
    (1)由黄金比值直接计算即可;
    (2)如图,连接GE,设BG=x,则AG=20-x,易证得四边形EFCD是矩形,可求得CE,由折叠知GH=BG=x,CH=BC=20,进而EH=CE-CH,在Rt△GAE和Rt△GHE中由勾股定理得关于x的方程,解之即可证得结论;
    (3)当PB=BC时,证得Rt△PBF≌Rt△CBF≌Rt△BAE,则有BF=AE,设BF=x,则AF=a-x,由AE∥PB得AE:PB=AF:BF,解得x,即可证得结论.
    【详解】
    (1)AB=×20=()(cm),
    故答案为:;
    (2)如图,连接GE,设BG=x,则GA=20-x,
    ∵四边形ABCD是正方形,
    ∴∠A=∠B=∠D=90º,
    由折叠性质得:CH=BC=20,GE=BG=x,∠GHC=∠B=90º,AE=ED=10,
    在Rt△CDE中,CE=,
    ∴EH=,
    在Rt△GHE中,
    在Rt△GAE中,,
    ∴,
    解得:x=,
    即,
    ∴是的黄金分割点;

    (3)当PB=BC时,、恰好分别是、的黄金分割点.
    理由:∵,
    ∴∠BCF+∠CBE=90º,又∠CBE+∠ABE=90º,
    ∴∠ABE=∠BCF,
    ∵∠A=∠ABC=90º,AB=BC,
    ∴△BAE≌△CBF(ASA),
    ∴AE=BF,
    设AE=BF=x,则AF=a-x,
    ∵AD∥BC即AE∥PB,
    ∴即,
    ∴,
    解得:或(舍去),
    即BF=AE=,
    ∴,
    ∴、分别是、的黄金分割点.
    【点睛】
    本题考查了正方形的性质、折叠性质、勾股定理、全等三角形的判定与性质、平行线分线段成比例、解一元二次方程等知识,解答的关键是认真审题,找出相关信息的关联点,确定解题思路,进而推理、探究、发现和计算.
    72.(2020·湖北省直辖县级单位?中考真题)实践操作:第一步:如图1,将矩形纸片沿过点D的直线折叠,使点A落在上的点处,得到折痕,然后把纸片展平.第二步:如图2,将图1中的矩形纸片沿过点E的直线折叠,点C恰好落在上的点处,点B落在点处,得到折痕,交于点M,交于点N,再把纸片展平.

    问题解决:
    (1)如图1,填空:四边形的形状是_____________________;
    (2)如图2,线段与是否相等?若相等,请给出证明;若不等,请说明理由;
    (3)如图2,若,求的值.
    【答案】(1)正方形;(2),见解析;(3)
    【解析】
    【分析】
    (1)有一组邻边相等且一个角为直角的平行四边形是正方形;
    (2)连接,由(1)问的结论可知,,又因为矩形纸片沿过点E的直线折叠,可知折叠前后对应角以及对应边相等,有,,,可以证明和全等,得到,从而有;
    (3)由,有;由折叠知,,可以计算出;用勾股定理计算出DF的长度,再证明得出等量关系,从而得到的值.
    【详解】
    (1)解:∵ABCD是平行四边形,
    ∴,
    ∴四边形是平行四边形
    ∵矩形纸片沿过点D的直线折叠,使点A落在上的点处



    ∴四边形的形状是正方形
    故最后答案为:四边形的形状是正方形;
    (2)
    理由如下:如图,连接,由(1)知:
    ∵四边形是矩形,

    由折叠知:

    又,




    (3)∵,∴
    由折叠知:,∴


    设,则
    在中,由勾股定理得:
    解得:,即
    如图,延长交于点G,则



    ∵,∴

    【点睛】
    (1)本问主要考查了正方形的定义,即有一组邻边相等且一个角为直角的平行四边形是正方形,其中明确折叠前后对应边、对应角相等是解题的关键;
    (2)本问利用了正方形的性质以及折叠前后对应边、对应角相等来证明三角形全等,再根据角相等则边相等即可做题,其中知道角相等则边相等的思想是解题的关键;
    (3)本问考查了全等三角形、相似三角形的性质、角相等则正切值相等以及勾股定理的应用,其中知道三角形相似则对应边成比例是解题的关键.
    73.(2020·江苏盐城?中考真题)木门常常需要雕刻美丽的图案.
    (1)图①为某矩形木门示意图,其中长为厘米,长为厘米,阴影部分是边长为厘米的正方形雕刻模具,刻刀的位置在模具的中心点处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;

    (2)如图,对于中的木门,当模具换成边长为厘米的等边三角形时,刻刀的位置仍在模具的中心点处,雕刻时也始终保持模具的一边紧贴本门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图中画出雕刻所得图案的草图,并求其周长.

    【答案】(1);(2)雕刻所得图案的草图见解析,图案的周长为
    【解析】
    【分析】
    (1)过点作求出PE,进而求得该图案的长和宽,利用长方形的周长公式即可解答;
    (2)如图,过P作PQ⊥CD于Q,连接PG,先利用等边三角形的性质求出PQ、PG及∠PGE,当移动到点时,求得旋转角和点P旋转的路径长,用同样的方法继续移动,即可画出图案的草图,再结合图形可求得所得图案的周长.
    【详解】
    如图,过点作垂足为

    是边长为的正方形模具的中心,

    同理:与之间的距离为
    与之间的距离为
    与之间的距离为



    答:图案的周长为.
    如图,连接过点作,垂足为

    是边长为的等边三角形模具的中心,





    当三角形向上平移至点与点重合时,
    由题意可得:绕点顺时针旋转
    使得与边重合
    绕点顺时针旋转至

    同理可得其余三个角均为弧长为的圆弧,
    图中的虚线即为所画的草图,


    答:雕刻所得图案的草图的周长为.
    【点睛】
    本题考查了图形的平移与旋转、等边三角形的性质、解含30º角的直角三角形、图形的周长等知识,解答的关键是熟练掌握图形平移和旋转过程中的变化特征,结合基本图形的性质进行推理、探究、发现和计算.
    74.(2020·湖北中考真题)如图1,已知,,点D在上,连接并延长交于点F.
    (1)猜想:线段与的数量关系为_____;
    (2)探究:若将图1的绕点B顺时针方向旋转,当小于时,得到图2,连接并延长交于点F,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;
    (3)拓展:图1中,过点E作,垂足为点G.当的大小发生变化,其它条件不变时,若,,直接写出的长.

    【答案】(1)AF=EF;(2)成立,理由见解析;(3)12
    【解析】
    【分析】

    (1) 延长DF到G点,并使FG=DC,连接GE,证明△ACF△EDG,进而得到△GEF为等腰三角形,即可证明AF=GE=EF;
    (2)证明原理同(1),延长DF到G点,并使FG=DC,连接GE,证明△ACF△EDG,进而得到△GEF为等腰三角形,即可证明AF=GE=EF;
    (3)补充完整图后证明四边形AEGC为矩形,进而得到∠ABC=∠ABE=∠EBG=60°即可求解.
    【详解】

    解:(1)延长DF到G点,并使FG=DC,连接GE,如下图所示

    ∵,
    ∴DE=AC,BD=BC,
    ∴∠CDB=∠DCB,且∠CDB=∠ADF,
    ∴∠ADF=∠DCB,
    ∵∠ACB=90°,
    ∴∠ACD+∠DCB=90°,
    ∵∠EDB=90°,
    ∴∠ADF+∠FDE=90°,
    ∴∠ACD=∠FDE,
    又延长DF使得FG=DC,
    ∴FG+DF=DC+DF,
    ∴DG=CF,
    在△ACF和△EDG中,

    ∴△ACF△EDG(SAS),
    ∴GE=AF,∠G=∠AFC,
    又∠AFC=∠GFE,
    ∴∠G=∠GFE
    ∴GE=EF
    ∴AF=EF,
    故AF与EF的数量关系为:AF=EF.
    故答案为:AF=EF;
    (2)仍旧成立,理由如下:
    延长DF到G点,并使FG=DC,连接GE,如下图所示
    设BD延长线DM交AE于M点,

    ∵,
    ∴DE=AC,BD=BC,
    ∴∠CDB=∠DCB,且∠CDB=∠MDF,
    ∴∠MDF=∠DCB,
    ∵∠ACB=90°,
    ∴∠ACD+∠DCB=90°,
    ∵∠EDB=90°,
    ∴∠MDF+∠FDE=90°,
    ∴∠ACD=∠FDE,
    又延长DF使得FG=DC,
    ∴FG+DF=DC+DF,
    ∴DG=CF,
    在△ACF和△EDG中,

    ∴△ACF△EDG(SAS),
    ∴GE=AF,∠G=∠AFC,
    又∠AFC=∠GFE,
    ∴∠G=∠GFE
    ∴GE=EF,
    ∴AF=EF,
    故AF与EF的数量关系为:AF=EF.
    故答案为:AF=EF;
    (3)如下图所示:

    ∵BA=BE,
    ∴∠BAE=∠BEA,
    ∵∠BAE=∠EBG,
    ∴∠BEA=∠EBG,
    ∴AECG,
    ∴∠AEG+∠G=180°,
    ∴∠AEG=90°,
    ∴∠ACG=∠G=∠AEG=90°,
    ∴四边形AEGC为矩形,
    ∴AC=EG,且AB=BE,
    ∴Rt△ACBRt△EGB(HL),
    ∴BG=BC=6,∠ABC=∠EBG,
    又∵ED=AC=EG,且EB=EB,
    ∴Rt△EDBRt△EGB(HL),
    ∴DB=GB=6,∠EBG=∠ABE,
    ∴∠ABC=∠ABE=∠EBG=60°,
    ∴∠BAC=30°,
    ∴在Rt△ABC中由30°所对的直角边等于斜边的一半可知:

    故答案为:.
    【点睛】

    本题属于四边形的综合题,考查了三角形全等的性质和判定,矩形的性质和判定,本题的关键是延长DF到G点并使FG=DC,进而构造全等,本题难度稍大,需要作出合适的辅助线.
    75.(2020·黑龙江穆棱?朝鲜族学校中考真题)已知抛物线y=a(x-2)2+c经过点A(-2,0)和点C(0,),与x轴交于另一点B,顶点为D.

    (1)求抛物线的解析式,并写出顶点D的坐标;
    (2)如图,点E,F分别在线段AB,BD上(点E不与点A,B重合),且∠DEF=∠DAB,DE=EF,直接写出线段BE的长.
    【答案】(1)y=(x-2)2+3;顶点D的坐标为(2,3);(2)BE=5.
    【解析】
    【分析】
    (1)本题可利用待定系数法,将A,C两点代入抛物线求解即可.
    (2)本题可利用等腰三角形性质,通过角的互换证明BD=BE,最后利用勾股定理求解BD即可解答.
    【详解】
    (1)将点A(-2,0),C(0,)代入 y = a(x - 2)2 + c,得:,解得:.
    ∴抛物线的解析式为y=(x-2)2+3 .
    ∴顶点D的坐标为(2,3).
    (2)∵A,B两点为抛物线与x轴两交点,D为坐标顶点,
    ∴DA=DB,故∠DAB=∠DBA,
    ∵DE=EF,
    ∴∠EDF=∠EFD.
    ∵∠EFD=∠FEB+∠EBD,∠DEF=∠DAB,
    ∴∠EDF=∠FEB+∠DEF,
    ∴∠BDE=∠BED,
    故BD=BE.
    ∵A(-2,0),D(2,3),
    ∴利用对称性可得B(6,0),
    经计算BD=5,
    故BE=5.
    【点睛】
    本题考查二次函数,第一问为常规题目,利用待定系数法求解即可;第二问属于二次函数与几何综合,解答时需要结合等腰三角形性质与判定求解本题.
    76.(2020·内蒙古中考真题)如图,是的直径,半径,垂足为O,直线l为的切线,A是切点,D是上一点,的延长线交直线l于点是上一点,的延长线交于点G,连接,已知的半径为3,,.

    (1)求的长;
    (2)求的值及的长.
    【答案】(1)AE=2;(2)CG=,cos∠CAG=
    【解析】
    【分析】

    (1)过点E作EH⊥OC,交OC的延长线于点H,证明四边形AOHE是矩形得到EH=OA=3,求得,即可得到AE;
    (2)先证明△ADE∽△OCD求得AD=1.2,OD=1.8,根据求得BF=2,CF=,连接BG,证明△AFC∽△GFB,得到,求得,即可得到CG=CF+GF=,设CO延长线交于点N,连接GN,则∠CNG=∠CAG,在Rt△CGN中,求得NG=,即可得到cos∠CAG=cos∠CNG=.
    【详解】

    (1)过点E作EH⊥OC,交OC的延长线于点H,
    ∵直线l为的切线,A是切点,
    ∴OA⊥AE,
    ∵OC⊥AB,
    ∴∠EHO=∠OAE=∠AOH=90°,
    ∴四边形AOHE是矩形,
    ∴EH=OA=3,AE=OH,
    ∵,
    ∴,
    ∴AE=OH=CH-OC=2;

    (2)∵∠OAE=∠AOC=90°,
    ∴OC∥AE,
    ∴△ADE∽△OCD,
    ∴,
    ∴AD=1.2,OD=1.8,
    ∵,
    ∴BF=2,
    ∴OF=1,
    ∴AF=4,CF=,
    连接BG,
    ∵∠ACF=∠B,∠AFC=∠GFB,
    ∴△AFC∽△GFB,
    ∴,
    ∴,
    ∴,
    ∴CG=CF+GF=,
    设CO延长线交于点N,连接GN,则∠CNG=∠CAG,
    在Rt△CGN中,∠CGN=90°,CN=6,CG=,
    ∴NG=,
    ∴cos∠CAG=cos∠CNG=.

    【点睛】

    此题考查矩形的判定定理及性质定理,勾股定理,圆切线的性质定理,圆周角定理,相似三角形的判定及性质,锐角三角函数解直角三角形,熟记各定理并熟练运用解题,正确连接辅助线是解此题的关键.
    77.(2020·内蒙古中考真题)如图,在中,,,绕点C按顺时针方向旋转得到,与交于点D.
    (1)如图,当时,过点B作,垂足为E,连接.

    ①求证:;
    ②求的值;
    (2)如图,当时,过点D作,交于点N,交的延长线于点M,求的值.

    【答案】(1)①见解析;②;(2)3
    【解析】
    【分析】
    (1)①根据旋转性质可知∠A=∠A´,根据平行线的性质可知∠ACA´=∠A´,得到∠A=∠ACA´,推出AD=CD,再由等角的余角相等可得∠BCD=∠CBD,推出CD=BD,最后推出结论;
    ②在Rt△BCE中,BC=2,可根据相似三角形的判定和性质求出BE、CE的长,过点E作EM⊥AC于M,则可求出EM,即可求得S△BEC、S△ACE、S△ABC、S△ABE,进而求得答案;
    (2)根据勾股定理求出AB长,根据三角形面积相等求出CD,由相似三角形的判定可知△CDB∽△ADC,推出CD2=BD·AD,求得AD的值,根据平行线分线段成比例定理可知,求出CN,由B´C∥A得出的值,进而求得的值即可.
    【详解】
    (1)①∵绕点C按顺时针方向旋转得到,
    ∴∠A=∠A´,

    ∴∠ACA´=∠A´,
    ∴∠ACA´=∠A,
    ∴AD=CD,
    ∵∠ACD+∠BCD=90°,∠A+∠ABC=90°
    ∴∠BCD=∠ABC
    ∴BD=CD
    ∴AD=BD,

    ②∵∠BCD=∠ABC=∠CEM,∠ACB=∠BEC=∠EMC=90°
    ∴△ACB∽△BEC∽△CME,BC=2,AC=4

    设CE=x,在Rt△CEB中,BE=2x,BC=2,

    解得即,BE=
    同理可得:EM=
    ∴S△BEC=
    S△ACE=
    S△ABC=
    S△ABE= S△ABC-S△ACE-S△BEC=
    ∴=

    (2)在Rt△ABC中,BC=2,AC=4,

    则AB=

    解得:CD=
    ∵∠A=∠BCD,∠ADC=∠BDC
    ∴△ADC∽△BDC
    ∴CD2=BD·AD

    解得:AD=
    ∵DM∥A´B´∴∠A´=∠CDM,∠A´CB´=∠DAN
    ∴△CDN∽△CA´B´
    ∴,即
    ∵∠ADC=∠A´CB´=90°
    ∴CN∥AB



    【点睛】
    本题考查是三角形旋转综合题,涉及到旋转的性质、相似三角形的判定和性质、勾股定理、平行线分线段成比例定理、三角形的面积、等腰三角形的判定等知识,熟练掌握并灵活运用这些知识是解题的关键.
    78.(2020·内蒙古中考真题)如图,一个人骑自行车由A地到C地途经B地当他由A地出发时,发现他的北偏东方向有一电视塔P,他由A地向正北方向骑行了到达B地,发现电视塔P在他北偏东方向,然后他由B地向北偏东方向骑行了到达C地.

    (1)求A地与电视塔P的距离;
    (2)求C地与电视塔P的距离.
    【答案】(1)AP=;(2)6
    【解析】
    【分析】
    (1)由题意知:∠A=45°,∠NBC=15°,∠NBP=75°,过点B作BE⊥AP于点E,求出AE=BE=3;
    (2)先利用三角函数求出BP=6,继而根据方位角求得∠CBP=60°,结合BC=6,即可证得△BCP是等边三角形,从而求得答案.
    【详解】
    (1)由题意知:∠A=45°,∠NBC=15°,∠NBP=75°,
    过点B作BE⊥AP于点E,如图,
    在Rt△ABE中,∠ABE=90°-45°=45°,
    ∴AE=BE,
    ∵,
    ∴AE=BE=3,
    在Rt△BEP中,∠EBP=180°-∠ABE-∠NBP=60°,
    ∴PE=,
    ∴AP=AE+PE=;

    (2)∵BE=3,∠BEP=90°,∠EBP=60°,
    ∴BP=,
    又∵∠CBP=∠NBP-∠NBC=75°-15°=60°,BC=6,
    ∴△BCP是等边三角形,
    ∴CP=BP=6.
    【点睛】
    此题考查锐角三角函数的实际应用,方位角的运用,等边三角形的判定及性质,根据题意明确各角度及线段,正确计算即可解决问题.
    79.(2020·内蒙古通辽?中考真题)如图,在平面直角坐标系中,抛物线与x轴交于点,与y轴交于点C,且直线过点B,与y轴交于点D,点C与点D关于x轴对称.点P是线段上一动点,过点P作x轴的垂线交抛物线于点M,交直线于点N.

    (1)求抛物线的函数解析式;
    (2)当的面积最大时,求点P的坐标;
    (3)在(2)的条件下,在y轴上是否存在点Q,使得以三点为顶点的三角形是直角三角形,若存在,直接写出点Q的坐标;若不存在,说明理由.
    【答案】(1);(2)(2,0);(3)存在,(0,12)或(0,-4)或(0,)或(0,).
    【解析】
    【分析】
    (1)根据直线求出点B和点D坐标,再根据C和D之间的关系求出点C坐标,最后运用待定系数法求出抛物线表达式;
    (2)设点P坐标为(m,0),表示出M和N的坐标,再利用三角形面积求法得出S△BMD=,再求最值即可;
    (3)分当∠QMN=90°时,当∠QNM=90°时,当∠MQN=90°时,三种情况,结合相似三角形的判定和性质,分别求解即可.
    【详解】
    解:(1)∵直线过点B,点B在x轴上,
    令y=0,解得x=6,令x=0,解得y=-6,
    ∴B(6,0),D(0,-6),
    ∵点C和点D关于x轴对称,
    ∴C(0,6),
    ∵抛物线经过点B和点C,代入,
    ,解得:,
    ∴抛物线的表达式为:;
    (2)设点P坐标为(m,0),
    则点M坐标为(m,),点N坐标为(m,m-6),
    ∴MN=-m+6=,
    ∴S△BMD=S△MNB+S△MND
    =
    =
    =-3(m-2)2+48
    当m=2时,S△BMD最大=48,
    此时点P的坐标为(2,0);
    (3)存在,
    由(2)可得:M(2,12),N(2,-4),
    设点Q的坐标为(0,n),
    当∠QMN=90°时,即QM⊥MN,如图,
    可得,此时点Q和点M的纵坐标相等,
    即Q(0,12);

    当∠QNM=90°时,即QN⊥MN,如图,
    可得,此时点Q和点N的纵坐标相等,
    即Q(0,-4);

    当∠MQN=90°时,MQ⊥NQ,如图,
    分别过点M和N作y轴的垂线,垂足为E和F,
    ∵∠MQN=90°,
    ∴∠MQE+∠NQF=90°,又∠MQE+∠QME=90°,
    ∴∠NQF=∠QME,
    ∴△MEQ∽△QFN,
    ∴,即,
    解得:n=或,
    ∴点Q(0,)或(0,),

    综上:点Q的坐标为(0,12)或(0,-4)或(0,)或(0,).
    【点睛】
    本题是二次函数综合题,考查了二次函数的表达式,相似三角形的判定和性质,直角三角形的性质,二次函数的最值,解一元二次方程,解题时要注意数形结合,分类讨论思想的运用.
    80.(2020·青海中考真题)在中,,交BA的延长线于点G.
    特例感知:
    (1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到.请给予证明.

    猜想论证:
    (2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作垂足为E.此时请你通过观察、测量DE,DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.

    联系拓展:
    (3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)

    【答案】(1)证明见详解;(2)DE+DF=CG,证明见详解;(3)成立.
    【解析】
    【分析】

    (1)通过条件证明△BFC≌△CGB,即可得到;
    (2)过点B作BM⊥CF交CF延长线于M,过点D作DH⊥BM于H,通过△BMC≌△CGB,得到BM=CG,然后由四边形MHDF为矩形,MH=DF,最后再证明△BDH≌△DBE,得到BH=DE,即可得到结论;
    (3)同(2)中的方法.
    【详解】

    (1)∵,
    ∴∠ABC=∠ACB,
    在△BFC和△CGB中,

    ∴△BFC≌△CGB,

    (2)DE+DF=CG,
    如图,过点B作BM⊥CF交CF延长线于M,过点D作DH⊥BM于H,

    ∵,
    ∴∠ABC=∠ACB,
    在△BMC和△CGB中,

    ∴△BMC≌△CGB,
    ∴BM=CG,
    由题意和辅助线可知,∠M=90°,∠MFD=90°,∠MHD=90°,
    ∴四边形MHDF为矩形,
    ∴MH=DF,DH∥MF,
    ∴∠HDB=∠MCB,
    ∴∠HDB=∠ABC,
    在△BDH和△DBE中,

    ∴△BDH≌△DBE,
    ∴BH=DE,
    ∵BM=CG,BM=BH+HM,
    ∴DE+DF=CG,
    (3)成立,
    如图,过点B作BM⊥CF交CF延长线于M,过点D作DH⊥BM于H,

    同(2)中的方法
    ∵,
    ∴∠ABC=∠ACB,
    在△BMC和△CGB中,

    ∴△BMC≌△CGB,
    ∴BM=CG,
    由题意和辅助线可知,∠M=90°,∠MFD=90°,∠MHD=90°,
    ∴四边形MHDF为矩形,
    ∴MH=DF,DH∥MF,
    ∴∠HDB=∠MCB,
    ∴∠HDB=∠ABC,
    在△BDH和△DBE中,

    ∴△BDH≌△DBE,
    ∴BH=DE,
    ∵BM=CG,BM=BH+HM,
    ∴DE+DF=CG.
    【点睛】

    本题考查了全等三角形的性质和判定,属于几何动态问题,能够正确的构造辅助线找到全等三角形是解题的关键.
    81.(2020·湖南郴州?中考真题)如图,在等腰直角三角形中,.点是的中点,以为边作正方形,连接.将正方形绕点顺时针旋转,旋转角为.

    (1)如图,在旋转过程中,
    ①判断与是否全等,并说明理由;
    ②当时,与交于点,求的长.
    (2)如图,延长交直线于点.
    ①求证:;
    ②在旋转过程中,线段的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
    【答案】(1)①全等,证明见解析;②;(2)①证明见解析;②.
    【解析】
    【分析】
    (1)①由等腰直角三角形性质和正方形性质根据全等三角形判定定理(SAS)即可证明;②过A点作AM⊥GD,垂足为M,交FE与N,利用等腰三角形三线合一性质构造直角三角形,由勾股定理求出AM的长,进而得出,再由求出结果;
    (2)①根据全等三角形性质可得,再在和中由三角形内角和定理得出,从而证明结论;②根据∠APC=90°得出PC最大值是∠GAD最大时,即GD⊥AG时,进而可知CEF三点共线,F与P重合,求出此时CE长,继而可得CP最大值.
    【详解】
    解:(1)①全等,理由如下:
    在等腰直角三角形中,AD=CD,,
    在正方形中,GD=ED,,
    又∵,,

    在和中,

    ∴(SAS);
    ②如解图2,过A点作AM⊥GD,垂足为M,交FE与N,

    ∵点是的中点,
    ∴在正方形中,DE=GD=GF=EF=2,
    由①得,
    ∴,
    又∵,
    ∴,
    ∵AM⊥GD,
    ∴,
    又∵ ,
    ∴四边形GMNF是矩形,
    ∴,
    在中,,

    ∵,

    ∴,
    ∴.
    (2)①由①得,
    ∴,
    又∵,
    ∴,
    ∴,即:;
    ②∵,
    ∴,
    ∴当最大时,PC最大,
    ∵∠DAC=45°,是定值,
    ∴最大时,最大,PC最大,
    ∵AD=4,GD=2,
    ∴当GD⊥AG,最大,如解图3,

    此时,
    又∵,,
    ∴F点与P点重合,
    ∴CEFP四点共线,
    ∴CP=CE+EF=AG+EF=,
    ∴线段得最大值为:.
    【点睛】
    本题考查了三角形的综合;涉及了全等三角形的判定与性质,正方形的性质,勾股定理,解直角三角形等知识,能够准确画出旋转后满足条件的两个图形,构造直角三角形求解是关键.
    82.(2020·湖南郴州?中考真题)如图,抛物线与轴交于,与轴交于点.已知直线过两点.
    (1)求抛物线和直线的表达式;
    (2)点是抛物线上的一个动点,
    ①如图,若点在第一象限内,连接,交直线于点.设的面积为,的面积为,求的最大值;
    ②如图2,抛物线的对称轴与轴交于点,过点作,垂足为.点是对称轴上的一个动点,是否存在以点为顶点的四边形是平行四边形?
    若存在,求出点的坐标;若不存在,请说明理由.

    【答案】(1),;(2)①;②存在,点P的坐标为(2,),点Q的坐标为(1,2)或(1,)
    【解析】
    【分析】
    (1)把A(-1,0),B(3,0)代入可求得抛物线的表达式,再求得点C的坐标,把B(3,0),C的坐标代入即可求解;
    (2)①设点D的坐标为(,),利用待定系数法求得直线PA的表达式为,解方程,求得点P的横坐标为,利用平等线分线段成比例定理求得,得到,利用二次函数的性质即可求解;
    ②根据等腰直角三角形的性质求得点的坐标为(2,),分当EF为边和EF为对角线时两种情况讨论,即可求解.
    【详解】
    (1)把A(-1,0),B(3,0)代入得:

    解得:,
    ∴抛物线的表达式为,
    令,则,
    ∴点C的坐标为(0,3),
    把B(3,0),C(0,3)代入得:

    解得:,
    ∴直线的表达式为;
    (2)①∵PA交直线BC于点,
    ∴设点D的坐标为(,),
    设直线PA的表达式为,
    ∴,
    解得:,
    ∴直线PA的表达式为,
    ∴,
    整理得:,
    解得:(不合题意,舍去),
    ∴点D的横坐标为,点P的横坐标为,
    分别过点D、P作x轴的垂线,垂足分别为M、N,如图:

    ∴DM∥PN,OM=,ON=,OA=1,



    ∵,
    ∴当时,分子取得最大值,即有最大值,最大值为;
    ②存在,理由如下:
    作于G,如图,

    ∵的对称轴为:,
    ∴OE=1,
    ∵B(3,0),C(0,3)
    ∵OC=OB=3,∠OCB=90,
    ∴△OCB是等腰直角三角形,
    ∵∠EFB=90,BE=OB-OE=2,
    ∴△OCB是等腰直角三角形,
    ∴EG=GB=EG=1,
    ∴点的坐标为(2,),
    当EF为边时,
    ∵EFPQ为平行四边形,
    ∴QE=PF,QE∥PF∥轴,
    ∴点P的横坐标与点F的横坐标同为2,
    当时,,
    ∴点P的坐标为(2,),
    ∴QE=PF=3-1=2,
    点Q的坐标为(1,2);
    当EF为对角线时,如图,

    ∵四边形PEQF为平行四边形,
    ∴QE=PF,QE∥PF∥轴,
    同理求得:点P的坐标为(2,),
    ∴QE=PF=3-1=2,
    点Q的坐标为(1,);
    综上,点P的坐标为(2,),点Q的坐标为(1,2)或(1,);
    【点睛】
    本题主要考查了一元二次方程的解法,待定系数法求二次函数解析式,等腰直角三角形的判定和性质,平行线公线段成比例定理,等高的三角形的面积的比等于底边的比,二次函数的性质以及平行四边形的对边的判定和性质,(3)注意要分AB是对角线与边两种情况讨论.
    83.(2020·山东东营?中考真题)如图1,在等腰三角形中,点分别在边上,连接点分别为的中点.

    (1)观察猜想
    图1中,线段的数量关系是____,的大小为_____;
    (2)探究证明
    把绕点顺时针方向旋转到如图2所示的位置,连接判断的形状,并说明理由;
    (3)拓展延伸
    把绕点在平面内自由旋转,若,请求出面积的最大值.
    【答案】(1)相等,;(2)是等边三角形,理由见解析;(3)面积的最大值为.
    【解析】
    【分析】
    (1)根据"点分别为的中点",可得MNBD,NPCE ,根据三角形外角和定理,等量代换求出.
    (2)先求出,得出,根据MNBD,NPCE ,和三角形外角和定理,可知MN=PN,再等量代换求出,即可求解.
    (3)根据,可知BD最大值,继而求出面积的最大值.
    【详解】
    由题意知:AB=AC,AD=AE,且点分别为的中点,
    ∴BD=CE,MNBD,NPCE,MN=BD,NP=EC
    ∴MN=NP
    又∵MNBD,NPCE,∠A=,AB=AC,
    ∴∠MNE=∠DBE,∠NPB=∠C,∠ABC=∠C=
    根据三角形外角和定理,
    得∠ENP=∠NBP+∠NPB
    ∵∠MNP=∠MNE+∠ENP,∠ENP=∠NBP+∠NPB,
    ∠NPB=∠C,∠MNE=∠DBE,
    ∴∠MNP=∠DBE+∠NBP+∠C
    =∠ABC+∠C =.
    是等边三角形.
    理由如下:
    如图,由旋转可得
    在ABD和ACE中



    点分别为的中点,
    是的中位线,

    同理可证且





    在中
    ∵∠MNP=,MN=PN
    是等边三角形.
    根据题意得:
    即,从而
    的面积.
    ∴面积的最大值为.
    【点睛】
    本题主要考查了三角形中点的性质、三角形相似的判定定理、三角形外角和定理以及图形旋转的相关知识;正确掌握三角形相似的判定定理、三角形外角和定理以及图形旋转的相关知识是解题的关键.
    84.(2020·吉林中考真题)如图,是等边三角形,,动点从点出发,以的速度沿向点匀速运动,过点作,交折线于点,以为边作等边三角形,使点,在异侧.设点的运动时间为,与重叠部分图形的面积为.

    (1)的长为______(用含的代数式表示).
    (2)当点落在边上时,求的值.
    (3)求关于的函数解析式,并写出自变量的取值范围.
    【答案】(1);(2);(3)当时,;当时,;当时,.
    【解析】
    【分析】

    (1)根据“路程速度时间”即可得;
    (2)如图(见解析),先根据等边三角形的性质可得,再根据垂直的定义可得,然后根据三角形全等的判定定理与性质可得,最后在中,利用直角三角形的性质列出等式求解即可得;
    (3)先求出点Q与点C重合时x的值,再分、和三种情况,然后分别利用等边三角形的性质、正切三角函数、以及三角形的面积公式求解即可得.
    【详解】

    (1)由题意得:
    故答案为:;
    (2)如图,和都是等边三角形

    ,即

    在和中,




    在中,
    ,即
    解得;

    (3)是等边三角形

    当点Q与点C重合时,
    则,解得
    结合(2)的结论,分以下三种情况:
    ①如图1,当时,重叠部分图形为
    由(2)可知,等边的边长为
    由等边三角形的性质得:PQ边上的高为

    ②如图2,当时,重叠部分图形为四边形EFPQ


    则在中,,

    在中,,即




    ③如图3,当时,重叠部分图形为
    同②可知,,
    在中,,即



    综上,当时,;当时,;当时,.

    【点睛】

    本题考查了等边三角形的性质、三角形全等的判定定理与性质、直角三角形的性质、正切三角函数等知识点,较难的是题(3),依据题意,正确分三种情况讨论是解题关键.
    85.(2020·吉林长春?中考真题)在平面直角坐标系中,函数(为常数)的图象与轴交于点.

    (1)求点的坐标.
    (2)当此函数图象经过点时,求此函数的表达式,并写出函数值随的增大而增大时的取值范围.
    (3)当时,若函数(为常数)的图象的最低点到直线的距离为2,求的值.
    (4)设,三个顶点的坐标分别为、、.当函数(为常数)的图象与的直角边有交点时,交点记为点.过点作轴的垂线,与此函数图象的另一个交点为(与不重合),过点作轴的垂线,与此函数图象的另一个交点为.若,直接写出的值.
    【答案】(1);(2),当时,随的增大而增大;(3)或;(4)或
    【解析】
    【分析】
    (1)由题意可知当x=0时,代入,进行求解即可得出结果;
    (2)根据题意先求出函数的表达式,进而得出抛物线的开口向上,对称轴为x=-1,则当x>-1时,y随x的增大而增大;
    (3)由题意分,那么对称轴在轴右侧以及,那么对称轴在轴左侧两种情况,依次建立含a的方程分别进行求解即可;
    (4)根据题意分当点在边上时以及当点在边上时两种情况,进而求得PP′并利用,建立含a的方程分别进行求解即可.
    【详解】
    解:(1)当时,,所以.
    (2)将点代入,得,解得.
    所以
    如图1所示,抛物线的开口向上,对称轴为.
    因此当时,随的增大而增大.
    (3)抛物线的对称轴为,顶点坐标为.
    如图2,如果,那么对称轴在轴右侧,最低点就是.
    已知最低点到直线的距离为2,所以.解得.
    如图3,如果,那么对称轴在轴左侧,顶点就是最低点.
    所以.整理,得.
    解得(如图3),或(舍去正值).


    (4),或.
    抛物线的对称轴为,
    ,所以.
    ①如图4,当点在边上时,.
    因为,所以点在对称轴的左侧.所以.
    由,得.解得.
    ②如图5,当点在边上时,.
    解方程,得.所以.
    由,得.
    解得,或(舍去).

    【点睛】
    本题是二次函数综合题,主要考查二次函数图象与性质、待定系数法求解析式、直角三角形的性质、解一元二次方程、分类讨论等知识;熟练掌握二次函数图象与性质是解题的关键.
    86.(2020·吉林长春?中考真题)(教材呈现)下图是华师版八年级下册数学教材第121页的部分内容.


    (问题解决)(1)如图①,已知矩形纸片,将矩形纸片沿过点的直线折叠,使点落在边上,点的对应点为,折痕为,点在上.求证:四边形是正方形.
    (规律探索)(2)由(问题解决)可知,图①中的为等腰三角形.现将图①中的点沿向右平移至点处(点在点的左侧),如图②,折痕为,点在上,点在上,那么还是等腰三角形吗?请说明理由.
    (结论应用)(3)在图②中,当时,将矩形纸片继续折叠如图③,使点与点重合,折痕为,点在上.要使四边形为菱形,则___________.
    【答案】(1)见解析;(2)是等腰三角形,见解析;(3)
    【解析】
    【分析】
    (1)由题意根据邻边相等的矩形是正方形进行分析证明即可.
    (2)根据题意证明∠QFP=∠FPQ即可解决问题.
    (3)由题意证明△PFQ,△PGA都是等边三角形,设QF=m,求出AB,AD(用m表示)即可解决问题.
    【详解】
    解:(1)证明:如图①中,

    ∵四边形ABCD是矩形,
    ∴∠A=∠ADA′=90°,
    由翻折可知,∠DA′E=∠A=90°,
    ∴∠A=∠ADA′=∠DA′E=90°,
    ∴四边形AEA′D是矩形,
    ∵DA=DA′,
    ∴四边形AEA′D是正方形.
    (2)结论:△PQF是等腰三角形.
    理由:如图②中,

    ∵四边形ABCD是矩形,
    ∴AB∥CD,
    ∴∠QFP=∠APF,
    由翻折可知,∠APF=∠FPQ,
    ∴∠QFP=∠FPQ,
    ∴QF=QP,
    ∴△PFQ是等腰三角形.
    (3)如图③中,

    ∵四边形PGQF是菱形,
    ∴PG=GQ=FQ=PF,
    ∵QF=QP,
    ∴△PFQ,△PGQ都是等边三角形,设QF=m,
    ∵∠FQP=60°,∠PQD′=90°,
    ∴∠DQD′=30°,
    ∵∠D′=90°,
    ∴,
    由翻折可知,,
    ∴,
    ∴.
    故答案为:.
    【点睛】
    本题属于四边形综合题,考查矩形的性质,正方形的判定和性质,菱形的性质,解直角三角形,等边三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    87.(2020·吉林长春?中考真题)如图①,在中,,,.点从点出发,沿折线以每秒5个单位长度的速度向点运动,同时点从点出发,沿以每秒2个单位长度的速度向点运动,点到达点时,点、同时停止运动.当点不与点、重合时,作点关于直线的对称点,连结交于点,连结、.设点的运动时间为秒.

    (1)当点与点重合时,求的值.
    (2)用含的代数式表示线段的长.
    (3)当为锐角三角形时,求的取值范围.
    (4)如图②,取的中点,连结.当直线与的一条直角边平行时,直接写出的值.
    【答案】(1);(2)或;(3)或;(4)或.
    【解析】
    【分析】
    (1)由题意直接根据AB=4,构建方程进行分析求解即可;
    (2)由题意分两种情形:当点P在线段AB上时,首先利用勾股定理求出AC,再求出AE即可解决问题.当点P在线段BC上时,在Rt△PCE中,求出CE即可;
    (3)根据题意求出两种特殊情形下△PDQ是等腰直角三角形时t的值,即可求解当△PDQ为锐角三角形时t的取值范围;
    (4)根据题意分两种情形:如图7,当点P在线段AB上,QM∥AB时以及如图8,当点P在线段BC上,QM∥BC时,分别求解即可.
    【详解】
    解:(1)当点与点重合时,.解得.
    (2)在中,,,所以,,.
    如图3,当点在上时,在中,.
    所以.
    如图4,当点在上时,在中,,.
    所以.
    (3)先考虑临界值等腰直角三角形,那么.
    如图5,当点在上时,在中,.
    而,
    由,得.解得.
    如图6,当点在上时,在中,.
    而,
    由,得,解得.
    再数形结合写结论.
    当为锐角三角形时,,或.

    (4)的值为或.
    如图7,当点在上时,延长交于点.
    作于,作于.
    由,是的中点,可知是的中点.
    在中,,所以.
    在中,.
    由,解得.
    如图8,当点在上时,作于.
    由,是的中点,可知.
    在中,,所以.
    在中,.
    由,得,解得.

    【点睛】
    本题属于几何变换综合题,考查解直角三角形,平行线的性质,等腰直角三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.
    88.(2020·重庆中考真题)△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE= .以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.
    (1)如图1,EF与AC交于点G,连接NG ,求线段NG的长;
    (2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;
    (3)连接BN.在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.

    【答案】(1)NG=;(2)∠DNM的为定值120°,证明见详解;(3)△AND的面积为
    【解析】
    【分析】
    (1)证明∠CGE=90°,求出DE=,EC=2,根据直角三角形性质即可求解;
    (2)证明BE∥DN,MN∥CF,△ABE≌△ACF,得到因此∠DGC=∠BHC,∠ENM=∠ECF,∠ABE=∠ACF,通过角的代换即可求解;
    (3)取AC中点P,因为BP+PN≥BN,所以当B、P、N在一直线上,BN最大.求出BN=,设BP与AD交于O,NQ⊥AD于Q,根据△ONQ∽△OBD,可求得NQ=,问题得解 .
    【详解】
    解:(1)∵△ABC为等边三角形,AB=8,AD⊥BC于点D,
    ∴∠DAC=30°,CD=,
    ∴ ,
    ∴ ,
    ∴ ,
    ∵三角形AEF是等边三角形,


    ∵N为CE的中点
    ∴.

    (2)∠DNM的为定值120°.
    连CF,BE,BE交AC于H,DN交AC于G,如图,
    ∵D、N、M分别为BC、CE、EF中点,
    ∴DN、MN分别为△BCE、ECF中位线,
    ∴BE∥DN,MN∥CF,
    ∵△ABC、△AEF都是等边三角形,
    ∴AB=AC,AE=AF,

    ∴△ABE≌△ACF.
    ∴∠DGC=∠BHC,∠ENM=∠ECF,∠ABE=∠ACF
    又∵∠BHC=∠ABE+∠BAH=∠ABE+60°,
    ∴∠DGC=∠ABE+60°=∠ACF+60°
    又∵∠DGC=∠DNC+∠GCN=∠DNC+∠ACF-∠ECF,∴∠DNC=60°+∠ECF=60°+∠ENM,
    ∴∠DGE=180°-∠DNC=120°-∠ENM,
    ∴∠DNM=∠DNE+∠ENM=120°.

    (3)△AND的面积为,
    如图,取AC中点P,因为BP+PN≥BN,所以当B、P、N在一直线上,BN最大.

    ∴BN=BP+PN=BP+AE=
    设BP与AD交于O,NQ⊥AD于Q,如图,
    ∴BO=BP=,ON=,BD=4,
    由题意得△ONQ∽△OBD,
    ∴NQ=,
    ∴△AND的面积为:×AD×NQ=.
    【点睛】
    本题考查了等边三角形性质,直角三角形性质,中位线定理,相似等知识,综合性较强,熟知图形变化规律,根据题意正确画出图形是解题关键.
    89.(2020·黑龙江大庆?中考真题)如图,抛物线与轴交于,两点(在的右侧),且经过点和点.

    (1)求抛物线的函数表达式;
    (2)连接,经过点的直线与线段交于点,与抛物线交于另一点.连接,,,的面积与的面积之比为1:7.点为直线上方抛物线上的一个动点,设点的横坐标为.当为何值时,的面积最大?并求出最大值;
    (3)在抛物线上,当时,的取值范围是,求的取值范围.(直接写出结果即可)
    【答案】(1);(2)所以:当时, 的最大面积;(3).
    【解析】
    【分析】
    (1)把和点代入:,从而可得答案;
    (2)过作轴于 过作轴于,则 利用的面积与的面积之比为1:7,求解的坐标,再求解的解析式及的坐标,设过作轴于,交于 建立的面积与的函数关系式,利用函数的性质求最大面积,从而可得答案;
    (3)记抛物线与轴的交点为 过作轴交抛物线于,先求解的坐标,可得当时,有 结合已知条件可得答案.
    【详解】
    解:(1)把和点代入:,

    解得:
    所以:抛物线的解析式为:,
    (2),
    令 则
    解得:

    过作轴于 过作轴于,则


    的面积与的面积之比为1:7,








    设的解析式为:

    解得:
    为:

    解得:

    过作轴于,交于




    当最大,则的面积最大,
    所以:当时,
    所以的最大面积=


    (3)

    记抛物线与轴的交点为 过作轴交抛物线于,

    令 则
    解得:


    抛物线的顶点为
    当时,

    当时,的取值范围是,



    【点睛】
    本题考查的是利用待定系数法求解二次函数的解析式,一次函数的解析式,考查了平行线分线段成比例,等腰直角三角形的性质,同时考查了二次函数的增减性,函数交点坐标的求解,是典型的压轴题,掌握以上相关的知识是解题的关键.
    90.(2020·江苏南通?中考真题)(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC.
    (2)如图②,A为⊙O上一点,按以下步骤作图:
    ①连接OA;
    ②以点A为圆心,AO长为半径作弧,交⊙O于点B;
    ③在射线OB上截取BC=OA;
    ④连接AC.
    若AC=3,求⊙O的半径.

    【答案】(1)见解析;(2)⊙O的半径为.
    【解析】
    【分析】
    (1)根据“AAS“证明△ABE≌△ACD,然后根据全等三角形的性质得到结论;
    (2)连接AB,如图②,由作法得OA=OB=AB=BC,先判断△OAB为等边三角形得到∠OAB=∠OBA=60°,再利用等腰三角形的性质和三角形外角性质得到∠C=∠BAC=30°,然后根据含30度的直角三角形三边的关系求OA的长.
    【详解】
    (1)证明:在△ABE和△ACD中

    ∴△ABE≌△ACD(AAS),
    ∴AB=AC;
    (2)解:连接AB,如图②,

    由作法得OA=OB=AB=BC,
    ∴△OAB为等边三角形,
    ∴∠OAB=∠OBA=60°,
    ∵AB=BC,
    ∴∠C=∠BAC,
    ∵∠OBA=∠C+∠BAC,
    ∴∠C=∠BAC=30°
    ∴∠OAC=90°,
    在Rt△OAC中,OA=AC=×3=.
    即⊙O的半径为.
    【点睛】
    本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定与性质.
    91.(2020·辽宁沈阳?中考真题)如图,在平面直角坐标系中,的顶点是坐标原点,点的坐标为,点的坐标为,动点从开始以每秒1个单位长度的速度沿轴正方向运动,设运动的时间为t秒(),过点作轴,分别交于点,.
    (1)填空:的长为_____,的长为____
    (2)当时,求点的坐标:
    (3)请直接写出的长为_____(用含的代数式表示);
    (4)点是线段上一动点(点不与点重合),和的面积分别表示为和,当时,请直接写出(即与的积)的最大值为__________.

    【答案】(1),;(2);(3);(4)16.
    【解析】
    【分析】
    (1)直接利用勾股定理求解即可;
    (2)利用待定系数法求得直线AB的解析式,令求解即可得到点N的坐标;
    (3)根据题意可得,利用相似三角形的性质即可求解;
    (4)根据求解即可.
    【详解】
    解:(1)∵点的坐标为,点的坐标为,
    ∴,,
    故答案为:,;
    (2)设直线AB的解析式为,将,代入得:
    ,解得,
    ∴,
    由题意可知点N的纵坐标为1,
    ∴令得,解得,
    ∴;
    (3)∵动点从开始以每秒1个单位长度的速度沿轴正方向运动,运动的时间为t秒,
    ∴到OB的距离为t,
    ∴的高为,
    ∴与的高之比为,
    ∵,
    ∴,
    ∴,即;
    (4)当时,,
    ∴,
    ∴,
    故答案为:16.
    【点睛】
    本题考查相似三角形的判定与性质、待定系数法求一次函数解析式等内容,掌握数形结合思想是解题的关键.
    92.(2020·辽宁沈阳?中考真题)在中,,点为线段延长线上一动点,连接,将线段绕点逆时针旋转,旋转角为,得到线段,连接.
    (1)如图,当时,
    ①求证:;
    ②求的度数:
    (2)如图2,当时,请直接写出和的数量关系为__________;
    (3)当时,若时,请直接写出点到的距离为__________.


    【答案】(1)①证明见解析;②60°;(2);(3)或.
    【解析】
    【分析】
    (1)①通过证明即可得证;②根据得到,故即可求解;
    (2)通过证明,对应线段成比例可得;
    (3)分两种情形,解直角三角形求出即可解决问题.
    【详解】
    解:(1)①证明:∵,,,
    ∴与都是等边三角形,
    ∴,,,
    ∴,即,
    ∴,
    ∴;
    ②∵,
    ∴,
    ∵,
    ∴,
    ∵是等边三角形,
    ∴,
    ∴;
    (2)∵,,,
    ∴,,
    ∴,即,
    ∴,
    ∴,即,
    故答案为:;
    (3)过点作于,过点作交的延长线于.
    如图中,当是钝角三角形时,

    在中,,,,
    ,,


    由(2)可知,,




    如图中,当是锐角三角形时,同法可得,,,

    综上所述,满足条件的的值为或.
    故答案为:或.
    【点睛】
    本题属于几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题.
    93.(2020·江苏宿迁?中考真题)二次函数的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E.
    (1)求这个二次函数的表达式,并写出点E的坐标;
    (2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;
    (3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.

    【答案】(1);(4,-1);(2)(4,3+)或(4,3-);(3)(10,8)或(,24)
    【解析】
    【分析】
    (1)由于二次函数的图象与x轴交于A(2,0)、B(6,0)两点,把A,B两点坐标代入,计算出a的值即可求出抛物线解析式,由配方法求出E点坐标;
    (2)由线段垂直平分线的性质可得出CB=CD,设D(4,m),由勾股定理可得=,解方程可得出答案;
    (3)设CQ交抛物线的对称轴于点M,设P(,),则Q(,),设直线CQ的解析式为,则,解得,求出M(,),ME=,由面积公式可求出n的值,则可得出答案.
    【详解】
    (1)将A(2,0),B(6,0)代入,
    得,
    解得,
    ∴二次函数的解析式为;
    ∵,
    ∴E(4,);
    (2)如图1,图2,连接CB,CD,由点C在线段BD的垂直平分线CN上,得CB=CD,

    设D(4,m),
    当时,,
    ∴C(0,3),
    ∵=,由勾股定理可得:
    =,
    解得m=3±,
    ∴满足条件的点D的坐标为(4,3+)或(4,3-);
    (3)如图3,设CQ交抛物线的对称轴于点M,

    设P(,),则Q(,),
    设直线CQ的解析式为,则,
    解得,
    于是直线CQ的解析式为:,
    当时,,
    ∴M(,),ME==,
    ∵S△CQE=S△CEM+S△QEM=,
    ∴,
    解得或,
    当时,P(10,8),
    当时,P(,24).
    综合以上可得,满足条件的点P的坐标为(10,8)或(,24).
    【点睛】
    本题是二次函数综合题,考查了待定系数法,二次函数图象与性质,垂直平分线的性质,勾股定理,三角形的面积;熟练掌握二次函数的性质及方程思想是解题的关键.
    94.(2020·江苏淮安?中考真题)如图①,二次函数的图象与直线交于、两点.点是轴上的一个动点,过点作轴的垂线交直线于点,交该二次函数的图象于点,设点的横坐标为.

    (1) , ;
    (2)若点在点的上方,且,求的值;
    (3)将直线向上平移4个单位长度,分别与轴、轴交于点、(如图②).
    ①记的面积为,的面积为,是否存在,使得点在直线的上方,且满足?若存在,求出及相应的、的值;若不存在,请说明理由.
    ②当时,将线段绕点顺时针旋转得到线段,连接、、,若,直接写出直线与该二次函数图象交点的横坐标.
    【答案】(1)1,﹣2;(2)m=0或2;(3)①存在,且,,;②或.
    【解析】
    【分析】

    (1)把点A的坐标代入抛物线解析式即可求出b,于是可得抛物线的解析式,再把点B的坐标代入抛物线的解析式即可求出n;
    (2)先利用待定系数法求出直线AB的解析式,由点P(m,0),则点M、N的坐标可得,于是MN的长可用含m的代数式表示,由MN=3可得关于m的方程,解方程即可求出m的值;
    (3)①易求出平移后直线CD的解析式,进而可得点C坐标,然后利用待定系数法分别求出直线AC和直线NC的解析式,设直线MN交AC于点F,过点B作BE⊥x轴交直线NC于点E,如图2,然后即可用含m的代数式表示出和,由可得关于m的方程,解方程即可求出m,进一步即可求出结果;
    ②当旋转后点F在点C左侧时,过点B作BQ⊥x轴于点Q,过点M作GH∥x轴,作AG⊥GH于点G,作FH⊥GH于点H,交x轴于点K,如图3,根据直线AB的特点和旋转的性质可得△AMG和△FMH是全等的两个等腰直角三角形,进一步即可根据等腰直角三角形的性质和直线上点的坐标特点求得FK=2,由条件,根据角的和差和平行线的性质可得∠AOD=∠CFK,然后根据两个角的正切相等即可求出CK的长,于是可得点F的坐标,进而可求出直线OF的解析式,进一步即可求出直线OF与抛物线交点的横坐标;当旋转后点F在点C右侧时,易得满足的点F不存在,从而可得答案.
    【详解】

    解:(1)把代入抛物线,得,解得:b=1,
    ∴抛物线的解析式是:,
    ∵点在抛物线上,
    ∴,
    故答案为:1,﹣2;
    (2)设直线的解析式是,把点、两点代入,得:
    ,解得:,
    ∴直线的解析式是,
    如图1,∵点P(m,0),∴点M(m,﹣m+1)、N(m,),
    当点在点的上方时,则 ,
    当时,,解得:m=0或2;

    (3)①直线向上平移4个单位长度后的解析式为,
    ∴点C、D的坐标分别是(5,0)、(0,5),
    则由、C(5,0)可得直线AC的解析式为,
    由N(m,)、C(5,0)可得直线NC的解析式为,
    设直线MN交AC于点F,过点B作BE⊥x轴交直线NC于点E,如图2,
    当x=3时,,∴点E(3,),
    ∴,,
    ∴,

    ∵,
    ∴,解得:,
    由于当时,,
    此时点N在直线AC的下方,故舍去;
    当时,,;
    ∴存在,使,且此时,;

    ②当旋转后点F在点C左侧时,过点B作BQ⊥x轴于点Q,过点M作GH∥x轴,作AG⊥GH于点G,作FH⊥GH于点H,交x轴于点K,如图3,
    ∵直线AB的解析式为,
    ∴∠AMG=45°,
    ∵将线段绕点顺时针旋转得到线段,
    ∴∠AMF=90°,MA=MF,
    ∴△AMG和△FMH是全等的两个等腰直角三角形,
    ∴AG=GM=MH=FH=m+1,
    ∵M(m,﹣m+1),
    ∴KH=PM=m-1,
    ∴FK=(m+1)-(m-1)=2,

    ∵,∠FBA=∠QBA+∠QBF=45°+∠QBF,
    ∴45°+∠QBF+∠AOD-∠BFC=45°,
    ∴∠QBF+∠AOD=∠BFC=∠BFK+∠CFK,
    ∵FK∥BQ,∴∠QBF =∠BFK,
    ∴∠AOD=∠CFK,
    ∴,
    ∴,OK=4,
    ∴点F的坐标是(4,2),
    ∴直线OF的解析式是,
    解方程:,得;
    当旋转后点F在点C右侧时,满足的点F不存在;
    综上,直线与该二次函数图象交点的横坐标为或.
    【点睛】

    本题是二次函数综合题,主要考查了二次函数的图象与性质、二次函数图象上点的坐标特征、一元二次方程的解法、等腰直角三角形的判定和性质、一次函数与二次函数的交点以及三角函数等知识,综合性强、难度较大,属于中考压轴题,熟练掌握二次函数的相关知识、灵活应用数形结合的思想是解题的关键.
    95.(2020·上海中考真题)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长交边AC于点D.
    (1)求证:∠BAC=2∠ABD;
    (2)当△BCD是等腰三角形时,求∠BCD的大小;
    (3)当AD=2,CD=3时,求边BC的长.

    【答案】(1)证明见解析;(2)∠BCD的值为67.5°或72°;(3).
    【解析】
    【分析】
    (1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.
    (2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.
    (3) 如图3中,作AEBC交BD的延长线于E.则,进而得到,设OB=OA=4a,OH=3a,根据BH2=AB2-AH2=OB2-OH2,构建方程求出a即可解决问题.
    【详解】
    解:(1)连接OA,如下图1所示:

    ∵AB=AC,
    ∴=,
    ∴OA⊥BC,
    ∴∠BAO=∠CAO.
    ∵OA=OB,
    ∴∠ABD=∠BAO,
    ∴∠BAC=2∠ABD.
    (2)如图2中,延长AO交BC于H.

    ①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.
    ∵AB=AC,
    ∴∠ABC=∠C,
    ∴∠DBC=2∠ABD.
    ∵∠DBC+∠C+∠BDC=180°,
    ∴8∠ABD=180°,
    ∴∠C=3∠ABD=67.5°.
    ②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C=4∠ABD.
    ∵∠DBC+∠C+∠CDB=180°,
    ∴10∠ABD=180°,
    ∴∠BCD=4∠ABD=72°.
    ③若DB=DC,则D与A重合,这种情形不存在.
    综上所述:∠C的值为67.5°或72°.
    (3)如图3中,过A点作AEBC交BD的延长线于E.

    则==,且BC=2BH,
    ∴==,
    设OB=OA=4a,OH=3a.
    则在Rt△ABH和Rt△OBH中,
    ∵BH2=AB2﹣AH2=OB2﹣OH2,
    ∴25 - 49a2=16a2﹣9a2,
    ∴a2=,
    ∴BH=,
    ∴BC=2BH=.
    故答案为:.
    【点睛】
    本题属于圆的综合题,考查了垂径定理,等腰三角形的性质,勾股定理解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数构建方程解决问题,属于中考常考题型.
    96.(2020·湖北随州?中考真题)如图,在平面直角坐标系中,抛物线的对称轴为直线,其图象与轴交于点和点,与轴交于点.

    (1)直接写出抛物线的解析式和的度数;
    (2)动点,同时从点出发,点以每秒3个单位的速度在线段上运动,点以每秒个单位的速度在线段上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为秒,连接,再将线段绕点顺时针旋转,设点落在点的位置,若点恰好落在抛物线上,求的值及此时点的坐标;
    (3)在(2)的条件下,设为抛物线上一动点,为轴上一动点,当以点,,为顶点的三角形与相似时,请直接写出点及其对应的点的坐标.(每写出一组正确的结果得1分,至多得4分)
    【答案】(1),;(2)t=,D点坐标为; (3);;; ;; ;; ; ;; .
    【解析】
    【分析】
    (1)根据抛物线的对称轴以及点B坐标可求出抛物线表达式;
    (2)过点N作于E,过点D作于F,证明,得到,从而得到点D坐标,代入抛物线表达式,求出t值即可;
    (3)设点P(m,),当点P在y轴右侧,点Q在y轴正半轴,过点P作PR⊥y轴于点R,过点D作DS⊥x轴于点S,根据△CPQ∽△MDB,得到,从而求出m值,再证明△CPQ∽△MDB,求出CQ长度,从而得到点Q坐标,同理可求出其余点P和点Q坐标.
    【详解】
    解:(1)∵抛物线的对称轴为直线,
    ∴,则b=-3a,
    ∵抛物线经过点B(4,0),
    ∴16a+4b+1=0,将b=-3a代入,
    解得:a=,b=,
    抛物线的解析式为:,
    令y=0,解得:x=4或-1,
    令x=0,则y=1,
    ∴A(-1,0),C(0,1),
    ∴tan∠CAO=,
    ∴;
    (2)由(1)易知,
    过点N作于E,过点D作于F,
    ∵∠DMN=90°,
    ∴∠NME+∠DMF=90°,又∠NME+∠ENM=90°,
    ∴∠DMF=∠ENM,

    , ,
    (AAS),

    由题意得:,,,



    ,又,
    故可解得:t=或0(舍),
    经检验,当t=时,点均未到达终点,符合题意,
    此时D点坐标为;

    (3)由(2)可知:D,t=时,M(,0),B(4,0),C(0,1),
    设点P(m,),
    如图,当点P在y轴右侧,点Q在y轴正半轴,
    过点P作PR⊥y轴于点R,过点D作DS⊥x轴于点S,
    则PR=m,DS=,
    若△CPQ∽△MDB,
    ∴,则,
    ,解得:m=0(舍)或1或5(舍),
    故点P的坐标为:,
    ∵△CPQ∽△MDB,
    ∴,
    当点P时,,解得:CQ=,,
    ∴点Q坐标为(0,),


    同理可得:点P和点Q的坐标为:
    ;;
    ;;
    ;;;;;;.
    【点睛】
    本题是二次函数综合题,考查了二次函数的图像和性质,二次函数表达式,全等三角形的判定和性质,相似三角形的性质,难度较大,计算量较大,解题时注意结合函数图像,找出符合条件的情形.
    97.(2020·湖南长沙?中考真题)在矩形ABCD中,E为上的一点,把沿AE翻折,使点D恰好落在BC边上的点F.
    (1)求证:
    (2)若,求EC的长;
    (3)若,记,求的值.

    【答案】(1)证明过程见解析;(2);(3).
    【解析】
    【分析】
    (1)只要证明∠B=∠C=90°,∠BAF=∠EFC即可;
    (2)因为△AFE是△ADE翻折得到的,得到AF=AD=4,根据勾股定理可得BF的长,从而得到CF的长,根据△ABF∽△FCE,得到,从而求出EC的长;
    (3)根据△ABF∽△FCE,得到∠CEF=∠BAF=,所以tan+tan=,设CE=1,DE=x,可得到AE,AB,AD的长,根据△ABF∽△FCE,得到,将求出的值代入化简会得到关于x的一元二次方程,解之即可求出x的值,然后可求出CE,CF,EF,AF的值,代入tan+tan=即可.
    【详解】
    (1)证明:∵四边形ABCD是矩形,
    ∴∠B=∠C=∠D=90°,
    ∴∠AFB+∠BAF=90°,
    ∵△AFE是△ADE翻折得到的,
    ∴∠AFE=∠D=90°,
    ∴∠AFB+∠CFE=90°,
    ∴∠BAF=∠CFE,
    ∴△ABF∽△FCE.
    (2)解:∵△AFE是△ADE翻折得到的,
    ∴AF=AD=4,
    ∴BF=,
    ∴CF=BC-BF=AD-BF=2,
    由(1)得△ABF∽△FCE,
    ∴,
    ∴,
    ∴EC=.
    (3)

    解:由(1)得△ABF∽△FCE,
    ∴∠CEF=∠BAF=,
    ∴tan+tan=,
    设CE=1,DE=x,
    ∵,
    ∴AE=DE+2EC=x+2,AB=CD=x+1,AD=
    ∵△ABF∽△FCE,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴x2-4x+4=0,
    解得x=2,
    ∴CE=1,CF=,EF=x=2,AF= AD==,
    ∴tan+tan==.
    【点睛】
    本题考查了相似三角形的判定与性质,翻折变换,矩形的性质,勾股定理等知识.解题的关键是灵活运用所学知识解决问题,学会运用方程的思想思考问题.
    98.(2020·海南中考真题)抛物线经过点和点,与轴交于点.
    (1)求该抛物线的函数表达式;
    (2)点是该抛物线上的动点,且位于轴的左侧.
    ①如图1,过点作轴于点,作轴于点,当时,求的长;

    ②如图2, 该抛物线上是否存在点,使得?若存在,请求出所有点的坐标;若不存在,请说明理由.

    【答案】(1);(2)①2或;②存在;或
    【解析】
    【分析】
    (1)用待定系数法求解即可;
    (2)①设则,排除当点在轴上,然后分两种情况求解:如图1,当点在第三象限时;如图2,当点在第二象限时;
    ②存在,过点作于点,交直线于点,由可得.过点作轴于点,由,求出MH、MA的值,然后分点P在第三象限和点P在第二象限求解即可.
    【详解】
    解:(1)∵抛物线经过点,

    解得,
    所以抛物线的函数表达式为;
    ①设则.
    因为点是抛物线上的动点且位于轴左侧,
    当点在轴上时,点与重合,不合题意,故舍去,
    因此分为以下两种情况讨论:.
    如图1,当点在第三象限时,点坐标为,

    则,即,
    解得(舍去),

    如图2,当点在第二象限时,点坐标为,

    则,即,
    解得(舍去) ,

    综上所述,的长为或;
    存在点,使得,理由如下:
    当时,,


    在中, .
    过点作于点,交直线于点,
    则,
    又,
    ∴,

    过点作轴于点,则,




    即,

    如图3,当点在第三象限时,点的坐标为,

    由和得,
    直线的解析式为.
    于是有,
    即,
    解得(舍去),
    点的坐标为;
    如图4,当点在第二象限时,点的坐标为,

    由和得,
    直线的解析式为,
    于是有,
    即,
    解得(舍去),
    点的坐标为,
    综上所述,点的坐标为或.
    【点睛】
    本题考查了待定系数法求函数解析式,二次函数图象上点的坐标特征,勾股定理,相似三角形的判定与性质,以及分类讨论的数学思想,分类讨论是解答本题的关键.本题难度较大,属中考压轴题.
    99.(2020·山东威海?中考真题)发现规律:
    (1)如图①,与都是等边三角形,直线交于点.直线,交于点.求的度数
    (2)已知:与的位置如图②所示,直线交于点.直线,交于点.若,,求的度数
    应用结论:

    (3)如图③,在平面直角坐标系中,点的坐标为,点的坐标为,为轴上一动点,连接.将线段绕点逆时针旋转得到线段,连接,,求线段长度的最小值

    【答案】(1)的度数为;(2)的度数为;(3)线段长度的最小值为
    【解析】
    【分析】

    (1)通过证明可得,再由三角形内角和定理进行求解即可;
    (2)通过证明可得,,可证,可得,由外角性质可得,再有三角形内角和定理进行求解即可;
    (3)由旋转的性质可得是等边三角形,可得,,如图③将绕点M顺时针旋转,得到,连接OQ,可得,OK=NQ,MO=MQ,则当NQ为最小值时,OK有最小值,由垂线段最短可得当轴时,NQ有最小值,由直角三角形的性质即可求解.
    【详解】

    (1)∵与是等边三角形
    ∴AB=AC,AD=AE,





    ∴;
    (2)∵,

    ∴,
    ∴,






    ∴;
    (3)∵将线段MN绕点M逆时针旋转得到线段MK
    ∴,
    ∴是等边三角形
    ∴,
    如下图,将绕点M顺时针旋转,得到,连接OQ

    ∴,
    ∴OK=NQ,MO=MQ
    ∴是等边三角形


    ∵OK=NQ
    ∴当NQ为最小值时,OK有最小值,由垂线段最短可得当轴时,NQ有最小值
    ∵点的坐标为

    ∵轴,

    ∴线段OK长度的最小值为.
    【点睛】

    本题属于几何变换综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,三角形内角和定理等知识,灵活运用这些性质进行推理是解决本题的关键.
    100.(2020·辽宁营口?中考真题)如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.

    (1)如图1,若k=1,则AF与AE之间的数量关系是  ;
    (2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)
    (3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.
    【答案】(1)AF=AE;(2)AF=kAE,证明见解析;(3)EG的长为或
    【解析】
    【分析】
    (1)证明△EAB≌△FAD(AAS),由全等三角形的性质得出AF=AE;
    (2)证明△ABE∽△ADF,由相似三角形的性质得出,则可得出结论;
    (3)①如图1,当点F在DA上时,证得△GDF∽△GBA,得出,求出AG=.由△ABE∽△ADF可得出,求出AE=.则可得出答案;
    ②如图2,当点F在DC的延长线上时,同理可求出EG的长.
    【详解】
    解:(1)AE=AF.
    ∵AD=AB,四边形ABCD矩形,
    ∴四边形ABCD是正方形,
    ∴∠BAD=90°,
    ∵AF⊥AE,
    ∴∠EAF=90°,
    ∴∠EAB=∠FAD,
    ∴△EAB≌△FAD(AAS),
    ∴AF=AE;
    故答案为:AF=AE.
    (2)AF=kAE.
    证明:∵四边形ABCD是矩形,
    ∴∠BAD=∠ABC=∠ADF=90°,
    ∴∠FAD+∠FAB=90°,
    ∵AF⊥AE,
    ∴∠EAF=90°,
    ∴∠EAB+∠FAB=90°,
    ∴∠EAB=∠FAD,
    ∵∠ABE+∠ABC=180°,
    ∴∠ABE=180°﹣∠ABC=180°﹣90°=90°,
    ∴∠ABE=∠ADF.
    ∴△ABE∽△ADF,
    ∴,
    ∵AD=kAB,
    ∴,
    ∴,
    ∴AF=kAE.
    (3)解:①如图1,当点F在DA上时,

    ∵四边形ABCD是矩形,
    ∴AB=CD,AB∥CD,
    ∵AD=2AB=4,
    ∴AB=2,
    ∴CD=2,
    ∵CF=1,
    ∴DF=CD﹣CF=2﹣1=1.
    在Rt△ADF中,∠ADF=90°,
    ∴AF=,
    ∵DF∥AB,
    ∴∠GDF=∠GBA,∠GFD=∠GAB,
    ∴△GDF∽△GBA,

    ∵AF=GF+AG,
    ∴AG=
    ∵△ABE∽△ADF,
    ∴,
    ∴AE==
    在Rt△EAG中,∠EAG=90°,
    ∴EG=,
    ②如图2,当点F在DC的延长线上时,DF=CD+CF=2+1=3,

    在Rt△ADF中,∠ADF=90°,
    ∴AF=.
    ∵DF∥AB,
    ∵∠GAB=∠GFD,∠GBA=∠GDF,
    ∴△AGB∽△FGD,
    ∴,
    ∵GF+AG=AF=5,
    ∴AG=2,
    ∵△ABE∽△ADF,
    ∴,
    ∴,
    在Rt△EAG中,∠EAG=90°,
    ∴EG=.
    综上所述,EG的长为或.
    【点睛】
    本题是相似形综合题,考查了全等三角形的判定与性质,正方形的性质,矩形的性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.




















    相关试卷

    初中数学中考复习 专题41三角形(6)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版):

    这是一份初中数学中考复习 专题41三角形(6)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共259页。试卷主要包含了解答题等内容,欢迎下载使用。

    初中数学中考复习 专题40三角形(5)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版):

    这是一份初中数学中考复习 专题40三角形(5)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版),共46页。试卷主要包含了解答题等内容,欢迎下载使用。

    初中数学中考复习 专题39三角形(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版):

    这是一份初中数学中考复习 专题39三角形(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共157页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map