年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    初中数学中考复习 专题9 运动型问题课件PPT

    立即下载
    加入资料篮
    初中数学中考复习 专题9 运动型问题课件PPT第1页
    初中数学中考复习 专题9 运动型问题课件PPT第2页
    初中数学中考复习 专题9 运动型问题课件PPT第3页
    初中数学中考复习 专题9 运动型问题课件PPT第4页
    初中数学中考复习 专题9 运动型问题课件PPT第5页
    初中数学中考复习 专题9 运动型问题课件PPT第6页
    初中数学中考复习 专题9 运动型问题课件PPT第7页
    初中数学中考复习 专题9 运动型问题课件PPT第8页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题9 运动型问题课件PPT

    展开

    这是一份初中数学中考复习 专题9 运动型问题课件PPT,共39页。PPT课件主要包含了专题解读,精讲释疑等内容,欢迎下载使用。
    “运动型问题”是探究几何图形(点、直线、三角形、四边形等)在运动变化过程中与图形相关的某些量(如角度、线段、周长、面积及相关的关系)的变化或其中存在的函数关系的一类开放性题目.此类问题的显著特点是图形的各个元素在运动变化的过程中互相依存、和谐统一,体现了数学中“变”与“不变”、“一般”与“特殊”的辩证思想,渗透了分类讨论、转化化归、数形结合、函数方程等重要的数学思想,综合性较强.
    运动型问题主要类型:(1)点的运动(单点运动、双点运动);(2)线的运动(线段或直线的运动);(3)形的运动(三角形运动、四边形运动、圆的运动等). 解决运动型试题需要用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住其中的等量关系和变量关系,并特别关注一些不变量和不变关系或特殊关系.
    解决点的运动型问题,一是要搞清在点运动变化的过程中,哪些图形(如线段、三角形等)随之运动变化,并在点运动在相对静止的瞬间,寻找变量的关系.二是要运用好相应的几何知识.三是要结合具体问题,建立函数模型,达到解题目的.
    例1.(2019·衢州)如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F,G.
    (1)求CD的长;(2)若点M是线段AD的中点,求 的值;(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?
    1.(2019·海南)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为( )
    2.(2019·扬州)如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD-DG运动,点Q沿折线BC-CG运动(与点G不重合),在运动过程中始终保持线段PQ∥AB.设PQ与AB之间的距离为x.(1)若a=12.
    ①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为________;②在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.
    线动型问题可以通过转化成点动型问题来求解.解决线动型问题的关键是要把握图形运动与变化的全过程,抓住其中的等量关系和变量关系.
    例2.(2019·金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB= ,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO;
    (2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长;②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.
    (1)证明:四边形ADFC是平行四边形,∴OD=OC,∴BD=2OD;
    如图3-3中,当∠DGE=90°时,取AB的中点O,连接OG,CG,作DT⊥BC于T,FH⊥BC于H,EK⊥CG于K.设EC=x.∵∠DBE=∠DFE=45°,∴D,B,F,E四点共圆,∴∠DBF+∠DEF=90°,∵∠DEF=90°,∴∠DBF=90°,∵AO=OB,AG=GF,∴OG∥BF,∴∠AOG=∠ABF=90°,∴OG⊥AB,∵OG垂直平分线段AB,∵CA=CB,∴O,G,C共线,由△DTE≌△EHF,
    3.(2019·乐山)如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E,F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,求四边形ABCD的周长.
    解决图形的运动型问题,一是要抓住几何图形在运动过程中形状和大小都不改变这一特性,充分利用不变量来解决问题;二是要运用特殊到一般的关系,探究图形运动变化过程中的不同阶段;三是要运用类比转化的方法探究相同运动状态下的共同性质.
    例3.(2018·湖州)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2 ,△ADC与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;
    (3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.
    4.(2019·天津)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(1)如图①,求点E的坐标;(2)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.
    ①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当 时,求t的取值范围(直接写出结果即可).

    相关课件

    初中数学中考复习 专题41 几何问题(2)之综合问题【热点专题】课件PPT:

    这是一份初中数学中考复习 专题41 几何问题(2)之综合问题【热点专题】课件PPT,共17页。

    初中数学中考复习 专题41 几何问题(1)之动点问题【热点专题】课件PPT:

    这是一份初中数学中考复习 专题41 几何问题(1)之动点问题【热点专题】课件PPT,共16页。

    初中数学中考复习 专题五 动态问题课件PPT:

    这是一份初中数学中考复习 专题五 动态问题课件PPT,共5页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map