初中数学中考复习 专题14 几何变换(原卷版)
展开
这是一份初中数学中考复习 专题14 几何变换(原卷版),共17页。
决胜2020中考数学压轴题全揭秘精品专题14 几何变换问题【考点1】平移变换问题【例1】(2019·山东中考真题)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )A.(﹣1,1) B.(﹣1,﹣2) C.(﹣1,2) D.(1,2)【变式1-1】(2019·甘肃中考真题)如图,在平面直角坐标系中,将四边形向下平移,再向右平移得到四边形,已知,则点坐标为( )A. B. C. D.【变式1-2】(2019·广西中考真题)如图,在平面直角坐标系中,已知的三个顶点坐标分别是(1)将向上平移4个单位长度得到,请画出;(2)请画出与关于轴对称的;(3)请写出的坐标.【考点2】轴对称变换问题(含折叠变换)【例2】(2019·四川中考真题)如图,在菱形中,,点分别在边上,将四边形沿翻折,使的对应线段经过顶点,当时,的值是_____.【变式2-1】(2019·江苏中考真题)如图,将平行四边形纸片沿一条直线折叠,使点与点重合,点落在点处,折痕为.求证:(1);(2).【变式2-2】(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为 ;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.【考点3】旋转变换问题【例3】(2019·山东中考真题)(1)问题发现 如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上. 填空:线段AD,BE之间的关系为 .(2)拓展探究 如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由. (3)解决问题 如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围. 【变式3-1】(2019·辽宁中考真题)如图,△ABC在平面直角坐标系中,顶点的坐标分别为A(-4,4),B(-1,1),C(-1,4).(1)画出与△ABC关于y轴对称的△A1B1C1.(2)将△ABC绕点B逆时针旋转90°,得到△A2BC2,画两出△A2BC2.(3)求线段AB在旋转过程中扫过的图形面积.(结果保留π)【变式3-2】(2019·江苏中考真题)如图①,在中,,,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转,点B的对应点是点E,连接BE,得到.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.① ;②连接CE,直线CE与直线AB的位置关系是 .(2)请在图③中画出,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.【考点4】位似变换问题【例4】(2019·广西中考真题)如图,与是以坐标原点为位似中心的位似图形,若点,,则的面积为__.【变式4-1】(2019·山东中考真题)在平面直角坐标系中,三个顶点的坐标分别为.以原点为位似中心,把这个三角形缩小为原来的,得到,则点的对应点的坐标是__________.【变式4-2】(2018·四川中考真题)如图,在方格纸中.(1)请在方格纸上建立平面直角坐标系,使,,并求出点坐标;(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;一、单选题1.(2019·浙江中考真题)在平面直角坐标系中,点与点关于y轴对称,则( )A., B., C., D.,2.(2019·辽宁中考真题)如图,点P(8,6)在△ABC的边AC上,以原点O为位似中心,在第一象限内将△ABC缩小到原来的,得到△A′B′C′,点P在A′C′上的对应点P′的的坐标为( )A.(4,3) B.(3,4) C.(5,3) D.(4,4)3.(2019·湖南中考真题)如图,将绕点逆时针旋转70°到的位置,若,则( )A.45° B.40° C.35° D.30°4.(2019·广东中考真题)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )A. B. C. D.5.(2019·浙江中考真题)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是( )A.(2,-1) B.(1,-2) C. (-2,1) D. (-2,-1)6.(2019·四川中考真题)在平面直角坐标系中,将点向右平移个单位长度后得到的点的坐标为( )A. B. C. D.7.(2019·湖南中考真题)点关于原点的对称点坐标是( )A. B. C. D.8.(2019·湖南中考真题)如图,以点O为位似中心,把放大为原图形的2倍得到,以下说法中错误的是( )A. B.点C、点O、点C′三点在同一直线上C. D.9.(2018·湖南中考真题)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是( )A.2 B.1 C.4 D.210.(2019·山东中考真题)如图,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到.若反比例函数的图象恰好经过的中点D,则k的值是( )A.9 B.12 C.15 D.1811.(2019·浙江中考真题)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积. 如图是由5个边长为1的小正方形拼成的图形,是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是( )A. B. C. D.12.(2019·湖北中考真题)如图,矩形中,与相交于点,,将沿折叠,点的对应点为,连接交于点,且,在边上有一点,使得的值最小,此时( )A. B. C. D.13.(2019·湖南中考真题)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转后得到正方形,依此方式,绕点O连续旋转2019次得到正方形,那么点的坐标是( )A. B. C. D.14.(2019·江苏中考真题)如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到,与BC,AC分别交于点D,E.设,的面积为,则与的函数图象大致为( )A. B. C. D.15.(2019·辽宁中考真题)如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为( )A. B. C. D.二、填空题16.(2019·湖南中考真题)在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是____________..17.(2019·山东中考真题)如图,在正方形网格中,格点绕某点顺时针旋转角得到格点,点与点,点与点,点与点是对应点,则_____度.18.(2019·海南中考真题)如图,将的斜边AB绕点A顺时针旋转得到AE,直角边AC绕点A逆时针旋转得到AF,连结EF.若,,且,则_____.19.(2019·山东中考真题)在平面直角坐标系中,点关于直线的对称点的坐标是_____.20.(2019·山东中考真题)如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,与是以点P为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P的坐标为_____21.(2019·四川中考真题)如图,在中,,,,将绕点逆时针旋转得到,使得点落在上,则的值为_______.22.(2019·吉林中考真题)如图,在四边形中,.若将沿折叠,点与边的中点恰好重合,则四边形的周长为________.23.(2019·湖南中考真题)如图,已知是等腰三角形,点D在AC边上,将绕点A逆时针旋转45°得到,且点D′、D、B三点在同一条直线上,则的度数是_____.24.(2019·辽宁中考真题)在平面直角坐标系中,点的坐标分别是,以点为位似中心,相们比为,把缩小,得到,则点的对应点的坐标为_____.25.(2019·四川中考真题)如图,在菱形中,,点分别在边上,将四边形沿翻折,使的对应线段经过顶点,当时,的值是_____.26.(2019·四川中考真题)如图,中,,,将绕点C逆时针旋转得到,连接BD,则的值是___.27.(2019·黑龙江中考真题)如图将绕点逆时针旋转得到,其中点与是对应点,点与是对应点,点落在边上,连接,若,,,则的长为__________.28.(2019·湖北中考真题)如图,在平面直角坐标系中,的直角顶点的坐标为 ,点在轴正半轴上,且.将先绕点逆时针旋转,再向左平移3个单位,则变换后点的对应点的坐标为______.29.(2019·四川中考真题)如图,、都是等腰直角三角形,,,,.将绕点逆时针方向旋转后得,当点恰好落在线段上时,则______.30.(2019·辽宁中考真题)如图,在△ABC中,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE.若AB=2,∠ACB=30°,则线段CD的长度为______.31.(2019·辽宁中考真题)如图,是等边三角形,点D为BC边上一点,,以点D为顶点作正方形DEFG,且,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为________.32.(2019·湖北中考真题)问题背景:如图,将绕点逆时针旋转60°得到,与交于点,可推出结论:问题解决:如图,在中,,,.点是内一点,则点到三个顶点的距离和的最小值是___________33.(2019·江苏中考真题)如图,过点C(3,4)的直线交轴于点A,∠ABC=90°,AB=CB,曲线过点B,将点A沿轴正方向平移个单位长度恰好落在该曲线上,则的值为________.三、解答题34.(2019·宁夏中考真题)已知:在平面直角坐标系中,的三个顶点的坐标分别为,,.(1)画出关于原点成中心对称的,并写出点的坐标;(2)画出将绕点按顺时针旋转所得的.35.(2019·湖北中考真题)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,B=D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,A=D,画出边BC的垂直平分线n.36.(2019·贵州中考真题)将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BC,DE.探究S△ABC与S△ADC的比是否为定值.(1)两块三角板是完全相同的等腰直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)(3)两块三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n为常数),S△ABC:S△ADE是否为定值?如果是,用含a,b,m,n的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)37.(2019·黑龙江中考真题)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点、、均在格点上.(1)画出关于轴对称的,并写出点的坐标;(2)画出绕原点顺时针旋转后得到的,并写出点的坐标;(3)在(2)的条件下,求线段在旋转过程中扫过的面积(结果保留).38.(2019·湖北中考真题)如图1,中,为内一点,将绕点按逆时针方向旋转角得到,点的对应点分别为点,且三点在同一直线上.(1)填空: (用含的代数式表示);(2)如图2,若,请补全图形,再过点作于点,然后探究线段之间的数量关系,并证明你的结论;(3)若,且点满足,直接写出点到的距离.39.(2019·山东中考真题)如图,和是有公共顶点的等腰直角三角形,.(1)如图1,连接,,的廷长线交于点,交于点,求证:;(2)如图2,把绕点顺时针旋转,当点落在上时,连接,,的延长线交于点,若,,求的面积.40.(2019·辽宁中考真题)思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是 米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是 ;②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.41.(2019·辽宁中考真题)如图,四边形ABCD是正方形,连接AC,将绕点A逆时针旋转α得,连接CF,O为CF的中点,连接OE,OD.(1)如图1,当时,请直接写出OE与OD的关系(不用证明).(2)如图2,当时,(1)中的结论是否成立?请说明理由.(3)当时,若,请直接写出点O经过的路径长.
相关试卷
这是一份初中数学中考复习 专题53 中考几何动态试题解法(原卷版),共10页。试卷主要包含了动态问题概述数,动点问题常见的四种类型解题思路,解决动态问题一般步骤等内容,欢迎下载使用。
这是一份初中数学中考复习 专题32 中考几何平移类问题(原卷版),共11页。试卷主要包含了平移的定义,平移的特点,理解并掌握平移的三个特征,图形平移的画法等内容,欢迎下载使用。
这是一份初中数学中考复习 专题14 几何变换问题(解析版),共57页。