初中数学中考复习 专题08 (广东省广州市专用)(原卷版)-2021年31个地区中考数学精品模拟试卷
展开第一部分选择题(共30分)
一、选择题(本大题10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.﹣2035的绝对值是( )
A. ﹣2035B. 2035C. ±2035D. 1/2035
2.某公司有10名员工,每人年收入数据如下表:
则他们年收入数据的众数与中位数分别为( )
A.4,6B.6,6C.4,5D.6,5
3.如图所示,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为( )
A.(1.5+150tanα)米B.(1.5+150tanα)米
C.(1.5+150sinα)米D.(1.5+150sinα)米
4.下列运算正确的是
A.B.C.D.
5.如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为( )
A.8B.12C.16D.291
6.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是( )
A.3(x﹣1)=6210xB.6210x-1=3
C.3x﹣1=6210xD.6210x=3
7.如图,四边形ABCD是菱形,E、F分别是BC、CD两边上的点,不能保证△ABE和△ADF一定全等的条件是( )
A.∠BAF=∠DAEB.EC=FCC.AE=AFD.BE=DF
8.若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=10x的图象上,则x1,x2,x3的大小关系
是( )
9.在矩形ABCD中,AC、BD相交于点O,若△AOB的面积为2,则矩形ABCD的面积为( )
A.4B.6C.8D.10
10.等腰三角形的一边长是3,另两边的长是关于x的方程x2﹣4x+k=0的两个根,则k的值为( )
A.3B.4C.3或4D.7
第二部分非选择题(共120分)
二、填空题(本大题6小题,每小题3分,满分18分)
11.设AB,CD,EF是同一平面内三条互相平行的直线,已知AB与CD的距离是12cm,EF与CD的距离是5cm,则AB与EF的距离等于 cm.
12.若代数式22x-6在实数范围内有意义,则x的取值范围是 .
13.写出一个比大且比小的整数______.
14.分解因式: .
15.在Rt△ABC中,∠C=90°,AC=4,BC=3.若以AC所在直线为轴,把△ABC旋转一周,得到一个圆锥,则这个圆锥的侧面积等于 .
16.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是 .
三、解答题(本大题9小题,满分102分.解答应写出文字文明,证明过程或演算步骤.)
17.(本小题满分9分)
解方程组
18.(本小题满分9分)
作已知角的平分线的方法:
已知:∠AOB.
求作:∠AOB的平分线.
作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.
(2)分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在∠AOB的内部相交于点C.
(3)画射线OC,射线OC即为所求(如图).
请你根据提供的材料完成下面问题.
(1)这种作已知角的平分线的方法的依据是 ① .(填序号)
①SSS②SAS③AAS④ASA
(2)请你证明OC为∠AOB的平分线.
19.(本小题满分10分)先化简,再求值:,其中是一次函数的图象与轴交点的横坐标.
20.(本小题满分10分)
为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C (4≤x<6),D(x≥6),并根据调查结果绘制了如图两幅不完整的统计图:
请你根据统计图的信息,解决下列问题:
(1)本次共调查了 名学生;
(2)在扇形统计图中,等级D所对应的扇形的圆心角为 °;
(3)请补全条形统计图;
(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.
21.(本小题满分12分)
2020年年初以来,全国多地猪肉价格连续上涨,引起了民众与政府的高度关注,政府向市场投入储备猪肉进行了价格平抑.据统计:某超市2020年1月10日猪肉价格比去年同一天上涨了,这天该超市每千克猪肉价格为56元.
(1)求2019年1月10日.该超市猪肉的价格为每千克多少元?
(2)现在某超市以每千克46元的价格购进猪肉,按2020年1月10日价格出售,平均一天能销售100千克.经调查表明:猪肉的售价每千克下降1元,平均每日销售量就增加20千克,超市为了实现销售猪肉平均每天有1120元的销售利润,在尽可能让利于顾客的前提下.每千克猪肉应该定价为多少元?
(本小题满分12分)
如图所示,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A(3,4),B(n,﹣1).
(1)求反比例函数和一次函数的解析式;
(2)在x轴上存在一点C,使△AOC为等腰三角形,求此时点C的坐标;
(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.
23.(本小题满分12分)
如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.
(1)求证:∠CAD=∠CBA.
(2)求OE的长.
24.(本小题满分14分)
一个问题解决往往经历发现猜想——探索归纳——问题解决的过程,下面结合一道几何题来体验一下.
(发现猜想)(1)如图①,已知∠AOB=70°,∠AOD=100°,OC为∠BOD的角平分线,则∠AOC的度数为 ;.
(探索归纳)(2)如图①,∠AOB=m,∠AOD=n,OC为∠BOD的角平分线. 猜想∠AOC的度数(用含m、n的代数式表示),并说明理由.
(问题解决)(3)如图②,若∠AOB=20°,∠AOC=90°,∠AOD=120°.若射线OB绕点O以每秒20°逆时针旋转,射线OC绕点O以每秒10°顺时针旋转,射线OD绕点O每秒30°顺时针旋转,三条射线同时旋转,当一条射线与直线OA重合时,三条射线同时停止运动. 运动几秒时,其中一条射线是另外两条射线夹角的角平分线?
25.(本小题满分14分)
如图,抛物线与轴交于点,,与轴交于点,顶点为,对称轴交轴于点.
(1)求该抛物线的一般式;
(2)若点为该抛物线上第一象限内一动点,且点在对称轴的右侧,求四边形面积的最大值及此时点的坐标;
(3)若点为对称轴上异于,的动点,过点作直线的垂线交直线于点,交轴于点,当为等腰三角形时,请直接写出点的坐标.
年收入/万元
4
6
8
10
人数/人
3
4
2
1
初中数学中考复习 专题13 (河南专用)(原卷版)-2021年31个地区中考数学精品模拟试卷: 这是一份初中数学中考复习 专题13 (河南专用)(原卷版)-2021年31个地区中考数学精品模拟试卷,共6页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
初中数学中考复习 专题12(河北专用)(原卷版)-2021年31个地区中考数学精品模拟试卷: 这是一份初中数学中考复习 专题12(河北专用)(原卷版)-2021年31个地区中考数学精品模拟试卷,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学中考复习 专题08 (广东省广州市专用)(解析版)-2021年31个地区中考数学精品模拟试卷: 这是一份初中数学中考复习 专题08 (广东省广州市专用)(解析版)-2021年31个地区中考数学精品模拟试卷,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。