初中数学中考复习 专题03 相似三角形的存在性问题(解析版)
展开
这是一份初中数学中考复习 专题03 相似三角形的存在性问题(解析版),共57页。
玩转压轴题,争取满分之备战2018年中考数学解答题高端精品
专题三 相似三角形的存在性问题
【考题研究】
相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.
【解题攻略】
相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.
判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。
应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.
应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).
【解题类型及其思路】
相似三角形存在性问题需要注意的问题:
1、若题目中问题为△ABC∽△DEF ,则对应线段已经确定。
2、若题目中为△ABC与 △DEF相似,则没有确定对应线段,此时有三种情况:①△ABC∽△DEF ,
②△ABC∽△FDE、 ③△ABC∽△EFD、
3、若题目中为△ABC与 △DEF并且有 ∠A、 ∠D(或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC∽△DEF ,②、△ABC∽△DFE 需要分类讨论上述的各种情况。
【典例指引】
类型一 【确定符合相似三角形的点的坐标】
典例指引1.(2019·贵州中考真题)如图,抛物线与直线分别相交于,两点,且此抛物线与轴的一个交点为,连接,.已知,.
(1)求抛物线的解析式;
(2)在抛物线对称轴上找一点,使的值最大,并求出这个最大值;
(3)点为轴右侧抛物线上一动点,连接,过点作交轴于点,问:是否存在点使得以,,为顶点的三角形与相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.
【答案】(1);(2)点M的坐标为(,)时,取最大值为;(3)存在点.
【解析】
【分析】
(1)根据待定系数法求解即可;
(2)根据三角形的三边关系可知:当点、、三点共线时,可使的值最大,据此求解即可;
(3)先求得,再过点作于点,过点作轴于点,如图,这样就把以,,为顶点的三角形与相似问题转化为以,,为顶点的三角形与相似的问题,再分当时与时两种情况,分别求解即可.
【详解】
解:(1)将,代入得:
,解得:,
∴抛物线的解析式是;
(2)解方程组:,得,,
∵,∴
当点、、三点不共线时,根据三角形三边关系得,
当点、、三点共线时,,
∴当点、、三点共线时,取最大值,即为的长,
如图,过点作BE⊥x轴于点,则在中,由勾股定理得:,∴取最大值为;
易求得直线BC的解析式为:y=-x-3,抛物线的对称轴是直线,当时,,∴点M的坐标为(,);
∴点M的坐标为(,)时,取最大值为;
(3)存在点,使得以、、为顶点的三角形与相似.
设点坐标为,
在中,∵,∴,
在中,∵,∴,
∴,,
过点作于点,过点作轴于点,如图,
∵,,∴∽,
∵,
∴①当时,∽,
∴,解得,,(舍去)
∴点的纵坐标为,∴点为;
②当时,∽,
∴,解得(舍去),(舍去),
∴此时无符合条件的点;
综上所述,存在点.
【名师点睛】
本题考查的是二次函数的综合运用,主要考查待定系数法求二次函数的解析式、相似三角形的判定与性质、一元二次方程的解法、两函数的交点和线段差的最值等问题,其中(1)题是基础题型,(2)题的求解需运用三角形的三边关系,(3)题要注意分类求解,避免遗漏,解题的关键是熟练掌握二次函数图象上点的坐标特征、相似三角形的判定与性质以及一元二次方程的解法.
【举一反三】
(2019·海南模拟)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).
(1)求该抛物线所对应的函数解析式;
(2)该抛物线与直线 相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.
①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;
②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.
【答案】(1);(2)① ;② 存在,((2,)或(,).
【解析】
【详解】
试题分析:(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;
(2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;
②当△CNQ与△PBM相似时有 或两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.
试题解析:(1)∵抛物线经过点A(1,0)和点B(5,0),
∴ ,解得
∴该抛物线对应的函数解析式为 ;
(2)①∵点P是抛物线上的动点且位于x轴下方,
∴可设P(t,)(1<t<5),
∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,
∴M(t,0),N(t,),
∴.
联立直线CD与抛物线解析式可得 ,解得 或,
∴C(0,3),D(7, ),
分别过C、D作直线PN的直线,垂足分别为E、F,如图1,
则CE=t,DF=7﹣t,
∴ ,
∴当时,△PCD的面积有最大值,最大值为;
②存在.
∵∠CQN=∠PMB=90°,
∴当△CNQ与△PBM相似时,有 或两种情况,
∵CQ⊥PM,垂足为Q,
∴Q(t,3),且C(0,3),N(t, ),
∴CQ=t,,
∴ ,
∵P(t,),M(t,0),B(5,0),
∴BM=5﹣t,,
当时,则,即,解得t=2或t=5(舍去),此时P(2, );
当时,则,即,解得或(舍去),此时P(,);
综上可知存在满足条件的点P,其坐标为P(2,)或(,).
类型二 【确定符合相似三角形的动点的运动时间或路程等】
典例指引2.
(2019年广东模拟)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线经过O,D,C三点.
(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动,设运动时间为t秒,当t为何值时,以P,Q,C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.
【解析】
(1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB-BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式;
(2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE,若以P、Q、C为顶点的三角形与△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t的值;
(3)由于以M,N,C,E为顶点的四边形,边和对角线都没明确指出,所以要分情况进行讨论:
①EC做平行四边形的对角线,那么EC、MN必互相平分,由于EC的中点正好在抛物线对称轴上,所以M点一定是抛物线的顶点;
②EC做平行四边形的边,那么EC、MN平行且相等,首先设出点N的坐标,然后结合E、C的横、纵坐标差表示出M点坐标,再将点M代入抛物线的解析式中,即可确定M、N的坐标.
试题解析:(1)∵四边形ABCO为矩形,
∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10,
由题意,得△BDC≌△EDC,
∴∠B=∠DEC=90°,EC=BC=10,ED=BD,
由勾股定理易得EO=6,
∴AE=10﹣6=4,
设AD=x,则BD=ED=8﹣x,由勾股定理,得 ,
解得,x=3,∴AD=3,
∵抛物线过点D(3, 10),C(8, 0),O(0, 0),
∴,解得 ,
∴抛物线的解析式为: ;
(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,
∴∠DEA=∠OCE,
由(1)可得AD=3,AE=4,DE=5,
而CQ=t,EP=2t,∴PC=10﹣2t,
当∠PQC=∠DAE=90°,△ADE∽△QPC,
∴,即 ,
解得,
当∠QPC=∠DAE=90°,△ADE∽△PQC,
∴,即 , 解得,
∴当或时,以P、Q、C为顶点的三角形与△ADE相似;
(3)假设存在符合条件的M、N点,分两种情况讨论:
①EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC是平行四边形,那么M点必为抛物线顶点; 则: ;而平行四边形的对角线互相平分,那么线段MN必被EC中点(4,3)平分,则;
②EC为平行四边形的边,则EC//MN,EC =MN,设N(4,m),
则M(4﹣8,m+6)或M(4+8,m﹣6);
将M(﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,
此时 N(4,﹣38)、M(﹣4,﹣32);
将M(12,m﹣6)代入抛物线的解析式中,得:m=﹣26,
此时 N(4,﹣26)、M(12,﹣32);
综上,存在符合条件的M、N点,且它们的坐标为:
①, ; ②, ;
③, .
【名师点睛】
本题考查了二次函数综合题,题目涉及了图形的折叠变换、相似三角形的判定和性质、平行四边形的判定和性质等重点知识.后两问的情况较多,需要进行分类讨论,以免漏解.
【举一反三】
(2019·湖南模拟)如图,已知直线y=-x+3与x轴、y轴分别交于A,B两点,抛物线y=-x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.
(1)求抛物线的解析式;
(2)问:当t为何值时,△APQ为直角三角形;
(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;
(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
【答案】(1)y=-x2+2x+3;(2)t=1或t=;(3)点F的坐标为(2,3).(4).
【解析】
【详解】
试题分析:(1)先由直线AB的解析式为y=-x+3,求出它与x轴的交点A、与y轴的交点B的坐标,再将A、B两点的坐标代入y=-x2+bx+c,运用待定系数法即可求出抛物线的解析式;
(2)由直线与两坐标轴的交点可知:∠QAP=45°,设运动时间为t秒,则QA=t,PA=3-t,然后再图①、图②中利用特殊锐角三角函数值列出关于t的方程求解即可;
(3)设点P的坐标为(t,0),则点E的坐标为(t,-t+3),则EP=3-t,点Q的坐标为(3-t,t),点F的坐标为(3-t,-(3-t)2+2(3-t)+3),则FQ=3t-t2,EP∥FQ,EF∥PQ,所以四边形为平行线四边形,由平行四边形的性质可知EP=FQ,从而的到关于t的方程,然后解方程即可求得t的值,然后将t=1代入即可求得点F的坐标;
(4)设运动时间为t秒,则OP=t,BQ=(3-t),然后由抛物线的解析式求得点M的坐标,从而可求得MB的长度,然后根据相似相似三角形的性质建立关于t的方程,然后即可解得t的值.
试题解析:(1)∵y=-x+3与x轴交于点A,与y轴交于点B,
∴当y=0时,x=3,即A点坐标为(3,0),
当x=0时,y=3,即B点坐标为(0,3),
将A(3,0),B(0,3)代入y=-x2+bx+c,
得,解得
∴抛物线的解析式为y=-x2+2x+3;
(2)∵OA=OB=3,∠BOA=90°,
∴∠QAP=45°.
如图①所示:∠PQA=90°时,设运动时间为t秒,则QA=t,PA=3-t.
在Rt△PQA中,,即:,解得:t=1;
如图②所示:∠QPA=90°时,设运动时间为t秒,则QA=t,PA=3-t.
在Rt△PQA中,,即:,解得:t=.
综上所述,当t=1或t=时,△PQA是直角三角形;
(3)如图③所示:
设点P的坐标为(t,0),则点E的坐标为(t,-t+3),则EP=3-t,点Q的坐标为(3-t,t),点F的坐标为(3-t,-(3-t)2+2(3-t)+3),则FQ=3t-t2.
∵EP∥FQ,EF∥PQ,
∴EP=FQ.即:3-t=3t-t2.
解得:t1=1,t2=3(舍去).
将t=1代入F(3-t,-(3-t)2+2(3-t)+3),得点F的坐标为(2,3).
(4)如图④所示:
设运动时间为t秒,则OP=t,BQ=(3-t).
∵y=-x2+2x+3=-(x-1)2+4,
∴点M的坐标为(1,4).
∴MB=.
当△BOP∽△QBM时,即:,整理得:t2-3t+3=0,
△=32-4×1×3<0,无解:
当△BOP∽△MBQ时,即:,解得t=.
∴当t=时,以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似.
类型三 【确定符合相似三角形的函数解析式或字母参数的值】
典例指引3.(2019·江苏中考真题)如图,二次函数图象的顶点为,对称轴是直线,一次函数的图象与轴交于点,且与直线关于的对称直线交于点.
(1)点的坐标是 ______;
(2)直线与直线交于点,是线段上一点(不与点、重合),点的纵坐标为.过点作直线与线段、分别交于点,,使得与相似.
①当时,求的长;
②若对于每一个确定的的值,有且只有一个与相似,请直接写出的取值范围 ______.
【答案】(1);(2)①;②.
【解析】
【分析】
(1)直接用顶点坐标公式求即可;
(2)由对称轴可知点C(2,),A(-,0),点A关于对称轴对称的点(,0),借助AD的直线解析式求得B(5,3);①当n=时,N(2,),可求DA=,DN=,CD=,当PQ∥AB时,△DPQ∽△DAB,DP=9;当PQ与AB不平行时,DP=9;②当PQ∥AB,DB=DP时,DB=3,DN=,所以N(2,),则有且只有一个△DPQ与△DAB相似时,<n<.
【详解】
(1)顶点为;
故答案为;
(2)对称轴,
,
由已知可求,
点关于对称点为,
则关于对称的直线为,
,
①当时,,
,,
当时,,
,
,
;
当与不平行时,,
,
,
;
综上所述;
②当,时,
,
,
,
,
∴有且只有一个与相似时,;
故答案为;
【点睛】
本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键.
【举一反三】
(2018武汉中考)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.
(1)直接写出抛物线L的解析式;
(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;
(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.
【答案】(1)y=﹣x2+2x+1;(2)-3;(3)当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).
【解析】
【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)利用待定系数法进行求解可即得;
(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG•xN﹣BG•xM=1得出xN﹣xM=1,联立直线和抛物线解析式求得x=,根据xN﹣xM=1列出关于k的方程,解之可得;
(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.
【详解】(1)由题意知,解得:,
∴抛物线L的解析式为y=﹣x2+2x+1;
(2)如图1,设M点的横坐标为xM,N点的横坐标为xN,
∵y=kx﹣k+4=k(x﹣1)+4,
∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),
∵y=﹣x2+2x+1=﹣(x﹣1)2+2,
∴点B(1,2),
则BG=2,
∵S△BMN=1,即S△BNG﹣S△BMG=BG•(xN﹣1)-BG•(xM-1)=1,
∴xN﹣xM=1,
由得:x2+(k﹣2)x﹣k+3=0,
解得:x==,
则xN=、xM=,
由xN﹣xM=1得=1,
∴k=±3,
∵k<0,
∴k=﹣3;
(3)如图2,
设抛物线L1的解析式为y=﹣x2+2x+1+m,
∴C(0,1+m)、D(2,1+m)、F(1,0),
设P(0,t),
(a)当△PCD∽△FOP时,,
∴,
∴t2﹣(1+m)t+2=0①;
(b)当△PCD∽△POF时,,
∴,
∴t=(m+1)②;
(Ⅰ)当方程①有两个相等实数根时,
△=(1+m)2﹣8=0,
解得:m=2﹣1(负值舍去),
此时方程①有两个相等实数根t1=t2=,
方程②有一个实数根t=,
∴m=2﹣1,
此时点P的坐标为(0,)和(0,);
(Ⅱ)当方程①有两个不相等的实数根时,
把②代入①,得:(m+1)2﹣(m+1)+2=0,
解得:m=2(负值舍去),
此时,方程①有两个不相等的实数根t1=1、t2=2,
方程②有一个实数根t=1,
∴m=2,此时点P的坐标为(0,1)和(0,2);
综上,当m=2﹣1时,点P的坐标为(0,)和(0,);
当m=2时,点P的坐标为(0,1)和(0,2).
【新题训练】
1.(2019·长沙市开福区青竹湖湘一外国语学校初三月考)如图1,已知抛物线;C1:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点B、C(点B在点C的左侧),与y轴交于点E.
(1)求点B、点C的坐标;
(2)当△BCE的面积为6时,若点G的坐标为(0,b),在抛物线C1的对称轴上是否存在点H,使得△BGH的周长最小,若存在,则求点H的坐标(用含b的式子表示);若不存在,则请说明理由;
(3)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.
【答案】(1)点B、C的坐标分别为:(﹣2,0)、(m,0);(2)存在,点H(1,b);(3)存在,m=2
【详解】
解:(1),令y=0,则x=﹣2或m,
故点B、C的坐标分别为:(﹣2,0)、(m,0);
(2)存在,理由:
,令x=0,则y=2,故点E(0,2),
△BCE的面积为: ,解得:m=4,
则抛物线的对称轴为: ,
点B关于函数对称轴的对称点为点C(m,0),连接CE交对称轴于点H,则点H为所求,
将点C、E的坐标代入一次函数表达式并解得:
直线CE的表达式为: ,当x=1时, ,
故点H(1,b);
(3)∵OE=OB=2,故∠EBO=45°,
过点F作FT⊥x轴于点F;
①当△BEC∽△BCF时,
则BC2=BE•BF,∠FBO=EBO=45°,
则直线BF的函数表达式为:y=﹣x﹣2,故点F(x,﹣x﹣2);
将点F的坐标代入抛物线表达式得:
解得:x=﹣2(舍去)或2m,
故点F(2m,﹣2m﹣2),
则
∵BC2=BE•BF,
则 解得: (舍去负值),
故
②当△BEC∽△FCB时,
则BC2=BF•EC,∠CBF=∠ECO,
则△BFT∽△COE,
则 ,则点
将点F的坐标代入抛物线表达式得:
解得:x=﹣2(舍去)或m+2;
则点
BC2=BF•EC,则
化简得:m3+4m2+4m=m3+4m2+4m+16,
此方程无解;
综上,m=2.
2.(2020·浙江初三期末)边长为2的正方形在平面直角坐标系中的位置如图所示,点是边的中点,连接,点在第一象限,且,.以直线为对称轴的抛物线过,两点.
(1)求抛物线的解析式;
(2)点从点出发,沿射线每秒1个单位长度的速度运动,运动时间为秒.过点作于点,当为何值时,以点,,为顶点的三角形与相似?
(3)点为直线上一动点,点为抛物线上一动点,是否存在点,,使得以点,,,为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.
【答案】(1);(2)或时,以点,,为顶点的三角形与相似;(3)存在,四边形是平行四边形时,,;四边形是平行四边形时,,;四边形是平行四边形时,,
【详解】
解:(1)过点作轴于点.
∵四边形是边长为2的正方形,是的中点,
∴,,.
∵,∴.
∵,∴.
在和中,
∴,,.
∴点的坐标为.
∵抛物线的对称轴为直线即直线,∴可设抛物线的解析式为,
将、点的坐标代入解析式,得,解得.
∴抛物线的解析式为;
(2)①若,则,,
∴,∴四边形是矩形,
∴,∴;
②若,则,
∴.
∴.
∴,∴.
∵,∴,∴.
∵,
∴,,
综上所述:或时,以点,,为顶点的三角形与相似:
(3)存在,①若以DE为平行四边形的对角线,如图2,
此时,N点就是抛物线的顶点(2,),
由N、E两点坐标可求得直线NE的解析式为:y=x;
∵DM∥EN,
∴设DM的解析式为:y=x+b,
将D(1,0)代入可求得b=−,
∴DM的解析式为:y=x−,
令x=2,则y=,
∴M(2,);
②过点C作CM∥DE交抛物线对称轴于点M,连接ME,如图3,
∵CM∥DE,DE⊥CD,
∴CM⊥CD,
∵OC⊥CB,
∴∠OCD=∠BCM,
在△OCD和△BCM中
,
∴△OCD≌△BCM(ASA),
∴CM=CD=DE,BM=OD=1,
∴CDEM是平行四边形,
即N点与C占重合,
∴N(0,2),M(2,3);
③N点在抛物线对称轴右侧,MN∥DE,如图4,
作NG⊥BA于点G,延长DM交BN于点H,
∵MNED是平行四边形,
∴∠MDE=MNE,∠ENH=∠DHB,
∵BN∥DF,
∴∠ADH=∠DHB=∠ENH,
∴∠MNB=∠EDF,
在△BMN和△FED中
∴△BMN≌△FED(AAS),
∴BM=EF=1,
BN=DF=2,
∴M(2,1),N(4,2);
综上所述,
四边形是平行四边形时,,;
四边形是平行四边形时,,;
四边形是平行四边形时,,.
3.(2020·长沙市长郡双语实验中学初三开学考试)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.
(1)求抛物线的解析式.
(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.
(3)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
【答案】(1);(2)E(﹣,﹣);;(3)(1,)或(1,)或Q(1,2)或Q(1,﹣).
【详解】
(1)由题可列方程组:,解得:
∴抛物线解析式为:y=x2﹣x﹣2;
(2)由题意和勾股定理得,∠AOC=90°,AC=,AB=4,
设直线AC的解析式为:y=kx+b,则,
解得:,
∴直线AC的解析式为:y=﹣2x﹣2;
当△AOC∽△AEB时=()2=()2=,
∵S△AOC=1,
∴S△AEB=,
∴AB×|yE|=,AB=4,则yE=﹣,
则点E(﹣,﹣);
由△AOC∽△AEB得:
∴;
(3)如图2,连接BF,过点F作FG⊥AC于G,
则FG=CFsin∠FCG=CF,
∴CF+BF=GF+BF≥BE,
当折线段BFG与BE重合时,取得最小值,
由(2)可知∠ABE=∠ACO
|y|=OBtan∠ABE=OBtan∠ACO=3×=,
∴当y=﹣时,即点F(0,﹣),CF+BF有最小值;
①当点Q为直角顶点时(如图3) F(0,﹣),
∵C(0,﹣2)
∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.
则Rt△QHM∽Rt△FQM∴QM2=HM•FM,
∴12=(2﹣m)(m+),
解得:m=,则点Q(1,)或(1,)
当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:
同理可得:点Q(1,﹣);
综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).
4.(2019·贵州初三)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.
【答案】(1) 抛物线的解析式为y=x2-2x+1,(2) 四边形AECP的面积的最大值是,点P(,﹣);(3) Q(4,1)或(-3,1).
【详解】
解:(1)将A(0,1),B(9,10)代入函数解析式得:
×81+9b+c=10,c=1,解得b=−2,c=1,
所以抛物线的解析式y=x2−2x+1;
(2)∵AC∥x轴,A(0,1),
∴x2−2x+1=1,解得x1=6,x2=0(舍),即C点坐标为(6,1),
∵点A(0,1),点B(9,10),
∴直线AB的解析式为y=x+1,设P(m,m2−2m+1),∴E(m,m+1),
∴PE=m+1−(m2−2m+1)=−m2+3m.
∵AC⊥PE,AC=6,
∴S四边形AECP=S△AEC+S△APC=AC⋅EF+AC⋅PF
=AC⋅(EF+PF)=AC⋅EP
=×6(−m2+3m)=−m2+9m.
∵0
相关试卷
这是一份中考数学二轮复习解答题培优专题03 相似三角形的存在性问题(含解析),共57页。
这是一份中考数学二轮专项培优专题03 相似三角形的存在性问题(教师版),共57页。
这是一份【全套】中考数学复习专题(知识梳理+含答案)专题03 相似三角形的存在性问题(解析版),共57页。