终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    初中数学中考复习 辽宁省营口市2020年中考数学试卷 解析版

    立即下载
    加入资料篮
    初中数学中考复习 辽宁省营口市2020年中考数学试卷  解析版第1页
    初中数学中考复习 辽宁省营口市2020年中考数学试卷  解析版第2页
    初中数学中考复习 辽宁省营口市2020年中考数学试卷  解析版第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 辽宁省营口市2020年中考数学试卷 解析版

    展开

    这是一份初中数学中考复习 辽宁省营口市2020年中考数学试卷 解析版,共28页。试卷主要包含了﹣6的绝对值是,下列计算正确的是,反比例函数y=等内容,欢迎下载使用。
    2020年辽宁省营口市中考数学试卷
    一.选择题(共10小题)
    1.﹣6的绝对值是(  )
    A.6 B.﹣6 C. D.﹣
    2.如图所示的几何体是由四个完全相同的小正方体搭成的,它的俯视图是(  )

    A. B. C. D.
    3.下列计算正确的是(  )
    A.x2•x3=x6 B.xy2﹣xy2=xy2
    C.(x+y)2=x2+y2 D.(2xy2)2=4xy4
    4.如图,AB∥CD,∠EFD=64°,∠FEB的角平分线EG交CD于点G,则∠GEB的度数为
    (  )

    A.66° B.56° C.68° D.58°
    5.反比例函数y=(x<0)的图象位于(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    6.如图,在△ABC中,DE∥AB,且=,则的值为(  )

    A. B. C. D.
    7.如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是(  )

    A.110° B.130° C.140° D.160°
    8.一元二次方程x2﹣5x+6=0的解为(  )
    A.x1=2,x2=﹣3 B.x1=﹣2,x2=3
    C.x1=﹣2,x2=﹣3 D.x1=2,x2=3
    9.某射击运动员在同一条件下的射击成绩记录如下:
    射击次数
    20
    80
    100
    200
    400
    1000
    “射中九环以上”的次数
    18
    68
    82
    168
    327
    823
    “射中九环以上”的频率(结果保留两位小数)
    0.90
    0.85
    0.82
    0.84
    0.82
    0.82
    根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是(  )
    A.0.90 B.0.82 C.0.85 D.0.84
    10.如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中∠OAB=90°,AO=AB,点C为斜边OB的中点,反比例函数y=(k>0,x>0)的图象过点C且交线段AB于点D,连接CD,OD,若S△OCD=,则k的值为(  )

    A.3 B. C.2 D.1
    二.填空题(共8小题)
    11.ax2﹣2axy+ay2=   .
    12.长江的流域面积大约是1800000平方千米,1800000用科学记数法表示为   .
    13.(3+)(3﹣)=   .
    14.从甲、乙、丙三人中选拔一人参加职业技能大赛,经过几轮初赛选拔,他们的平均成绩都是87.9分,方差分别是S甲2=3.83,S乙2=2.71,S丙2=1.52.若选取成绩稳定的一人参加比赛,你认为适合参加比赛的选手是   .
    15.一个圆锥的底面半径为3,高为4,则此圆锥的侧面积为   .
    16.如图,在菱形ABCD中,对角线AC,BD交于点O,其中OA=1,OB=2,则菱形ABCD的面积为   .

    17.如图,△ABC为等边三角形,边长为6,AD⊥BC,垂足为点D,点E和点F分别是线段AD和AB上的两个动点,连接CE,EF,则CE+EF的最小值为   .

    18.如图,∠MON=60°,点A1在射线ON上,且OA1=1,过点A1作A1B1⊥ON交射线OM于点B1,在射线ON上截取A1A2,使得A1A2=A1B1;过点A2作A2B2⊥ON交射线OM于点B2,在射线ON上截取A2A3,使得A2A3=A2B2;…;按照此规律进行下去,则A2020B2020长为   .

    三.解答题
    19.先化简,再求值:(﹣x)÷,请在0≤x≤2的范围内选一个合适的整数代入求值.
    20.随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.
    (1)李老师被分配到“洗手监督岗”的概率为  ;
    (2)用列表法或面树状图法,求李老师和王老师被分配到同一个监督岗的概率.
    21.“生活垃圾分类”逐渐成为社会生活新风尚,某学校为了了解学生对“生活垃圾分类”的看法,随机调查了200名学生(每名学生必须选择且只能选择一类看法),调查结果分为“A.很有必要”“B.有必要”“C.无所谓”“D.没有必要”四类.并根据调查结果绘制了图1和图2两幅统计图(均不完整),请根据图中提供的信息,解答下列问题:

    (1)补全条形统计图;
    (2)扇形统计图中“D.没有必要”所在扇形的圆心角度数为  ;
    (3)该校共有2500名学生,根据调查结果估计该校对“生活垃圾分类”认为“A.很有必要”的学生人数.

    22.如图,海中有一个小岛A,它周围10海里内有暗礁,渔船跟踪鱼群由东向西航行,在B点测得小岛A在北偏西60°方向上,航行12海里到达C点,这时测得小岛A在北偏西30°方向上,如果渔船不改变方向继续向西航行,有没有触礁的危险?并说明理由.(参考数据:≈1.73)


    23.如图,△ABC中,∠ACB=90°,BO为△ABC的角平分线,以点O为圆心,OC为半径作⊙O与线段AC交于点D.
    (1)求证:AB为⊙O的切线;
    (2)若tanA=,AD=2,求BO的长.


    24.某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).
    (1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;
    (2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?
    25.如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.
    (1)如图1,若k=1,则AF与AE之间的数量关系是  ;
    (2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)
    (3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.

    26.在平面直角坐标系中,抛物线y=ax2+bx﹣3过点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D.
    (1)求抛物线的解析式;
    (2)点P为直线CD上的一个动点,连接BC;
    ①如图1,是否存在点P,使∠PBC=∠BCO?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由;
    ②如图2,点P在x轴上方,连接PA交抛物线于点N,∠PAB=∠BCO,点M在第三象限抛物线上,连接MN,当∠ANM=45°时,请直接写出点M的坐标.



    2020年辽宁省营口市中考数学试卷
    参考答案与试题解析
    一.选择题(共10小题)
    1.﹣6的绝对值是(  )
    A.6 B.﹣6 C. D.﹣
    【分析】根据负数的绝对值是它的相反数,可得负数的绝对值.
    【解答】解:|﹣6|=6,
    故选:A.
    2.如图所示的几何体是由四个完全相同的小正方体搭成的,它的俯视图是(  )

    A. B. C. D.
    【分析】找到从上面看所得到的图形即可,所有的看到的棱都应表现在俯视图中.
    【解答】解:从上面看易得俯视图:

    故选:C.
    3.下列计算正确的是(  )
    A.x2•x3=x6 B.xy2﹣xy2=xy2
    C.(x+y)2=x2+y2 D.(2xy2)2=4xy4
    【分析】根据完全平方公式,同底数幂的乘法、合并同类项、积的乘方的运算法则分别进行计算后,可得到正确答案.
    【解答】解:A、x2•x3=x5,原计算错误,故此选项不符合题意;
    B、xy2﹣xy2=xy2,原计算正确,故此选项符合题意;
    C、(x+y)2=x2+2xy+y2,原计算错误,故此选项不符合题意;
    D、(2xy2)2=4xy4,原计算错误,故此选项不符合题意.
    故选:B.
    4.如图,AB∥CD,∠EFD=64°,∠FEB的角平分线EG交CD于点G,则∠GEB的度数为
    (  )

    A.66° B.56° C.68° D.58°
    【分析】根据平行线的性质求得∠BEF,再根据角平分线的定义求得∠GEB.
    【解答】解:∵AB∥CD,
    ∴∠BEF+∠EFD=180°,
    ∴∠BEF=180°﹣64°=116°;
    ∵EG平分∠BEF,
    ∴∠GEB=58°.
    故选:D.
    5.反比例函数y=(x<0)的图象位于(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    【分析】根据题目中的函数解析式和x的取值范围,可以解答本题.
    【解答】解:∵反比例函数y=(x<0)中,k=1>0,
    ∴该函数图象在第三象限,
    故选:C.
    6.如图,在△ABC中,DE∥AB,且=,则的值为(  )

    A. B. C. D.
    【分析】平行于三角形一边的直线截其他两边所得的对应线段成比例,据此可得结论.
    【解答】解:∵DE∥AB,
    ∴==,
    ∴的值为,
    故选:A.
    7.如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是(  )

    A.110° B.130° C.140° D.160°
    【分析】连接BC,如图,利用圆周角定理得到∠ACB=90°,则∠B=50°,然后利用圆的内接四边形的性质求∠ADC的度数.
    【解答】解:如图,连接BC,
    ∵AB为⊙O的直径,
    ∴∠ACB=90°,
    ∴∠B=90°﹣∠CAB=90°﹣40°=50°,
    ∵∠B+∠ADC=180°,
    ∴∠ADC=180°﹣50°=130°.
    故选:B.

    8.一元二次方程x2﹣5x+6=0的解为(  )
    A.x1=2,x2=﹣3 B.x1=﹣2,x2=3
    C.x1=﹣2,x2=﹣3 D.x1=2,x2=3
    【分析】利用因式分解法解方程.
    【解答】解:(x﹣2)(x﹣3)=0,
    x﹣2=0或x﹣3=0,
    所以x1=2,x2=3.
    故选:D.
    9.某射击运动员在同一条件下的射击成绩记录如下:
    射击次数
    20
    80
    100
    200
    400
    1000
    “射中九环以上”的次数
    18
    68
    82
    168
    327
    823
    “射中九环以上”的频率(结果保留两位小数)
    0.90
    0.85
    0.82
    0.84
    0.82
    0.82
    根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是(  )
    A.0.90 B.0.82 C.0.85 D.0.84
    【分析】根据大量的实验结果稳定在0.82左右即可得出结论.
    【解答】解:∵从频率的波动情况可以发现频率稳定在0.82附近,
    ∴这名运动员射击一次时“射中九环以上”的概率是0.82.
    故选:B.
    10.如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中∠OAB=90°,AO=AB,点C为斜边OB的中点,反比例函数y=(k>0,x>0)的图象过点C且交线段AB于点D,连接CD,OD,若S△OCD=,则k的值为(  )

    A.3 B. C.2 D.1
    【分析】根据题意设B(m,m),则A(m,0),C(,),D(m,m),然后根据S△COD=S△COE+S梯形ADCE﹣S△AOD=S梯形ADCE,得到(+)•(m﹣m)=,即可求得k==2.
    【解答】解:根据题意设B(m,m),则A(m,0),
    ∵点C为斜边OB的中点,
    ∴C(,),
    ∵反比例函数y=(k>0,x>0)的图象过点C,
    ∴k=•=,
    ∵∠OAB=90°,
    ∴D的横坐标为m,
    ∵反比例函数y=(k>0,x>0)的图象过点D,
    ∴D的纵坐标为,
    作CE⊥x轴于E,
    ∵S△COD=S△COE+S梯形ADCE﹣S△AOD=S梯形ADCE,S△OCD=,
    ∴(AD+CE)•AE=,即(+)•(m﹣m)=,
    ∴=1,
    ∴k==2,
    故选:C.

    二.填空题(共8小题)
    11.ax2﹣2axy+ay2= a(x﹣y)2 .
    【分析】首先提取公因式a,再利用完全平方公式分解因式即可.
    【解答】解:ax2﹣2axy+ay2
    =a(x2﹣2xy+y2)
    =a(x﹣y)2.
    故答案为:a(x﹣y)2.
    12.长江的流域面积大约是1800000平方千米,1800000用科学记数法表示为 1.8×106 .
    【分析】根据科学记数法的表示方法:a×10n,可得答案.
    【解答】解:将1800000用科学记数法表示为 1.8×106,
    故答案为:1.8×106.
    13.(3+)(3﹣)= 12 .
    【分析】直接利用平方差公式计算得出答案.
    【解答】解:原式=(3)2﹣()2
    =18﹣6
    =12.
    故答案为:12.
    14.从甲、乙、丙三人中选拔一人参加职业技能大赛,经过几轮初赛选拔,他们的平均成绩都是87.9分,方差分别是S甲2=3.83,S乙2=2.71,S丙2=1.52.若选取成绩稳定的一人参加比赛,你认为适合参加比赛的选手是 丙 .
    【分析】再平均数相等的前提下,方差越小成绩越稳定,据此求解可得.
    【解答】解:∵平均成绩都是87.9分,S甲2=3.83,S乙2=2.71,S丙2=1.52,
    ∴S丙2<S乙2<S甲2,
    ∴丙选手的成绩更加稳定,
    ∴适合参加比赛的选手是丙,
    故答案为:丙.
    15.一个圆锥的底面半径为3,高为4,则此圆锥的侧面积为 15π .
    【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的侧面积公式代入求出即可.
    【解答】解:∵圆锥的底面半径为3,高为4,
    ∴母线长为5,
    ∴圆锥的侧面积为:πrl=π×3×5=15π,
    故答案为:15π
    16.如图,在菱形ABCD中,对角线AC,BD交于点O,其中OA=1,OB=2,则菱形ABCD的面积为 4 .

    【分析】根据菱形的面积等于对角线之积的一半可得答案.
    【解答】解:∵OA=1,OB=2,
    ∴AC=2,BD=4,
    ∴菱形ABCD的面积为×2×4=4.
    故答案为:4.
    17.如图,△ABC为等边三角形,边长为6,AD⊥BC,垂足为点D,点E和点F分别是线段AD和AB上的两个动点,连接CE,EF,则CE+EF的最小值为 3 .

    【分析】过C作CF⊥AB交AD于E,则此时,CE+EF的值最小,且CE+EF的最小值=CF,根据等边三角形的性质得到BF=AB=6=3,根据勾股定理即可得到结论.
    【解答】解:过C作CF⊥AB交AD于E,
    则此时,CE+EF的值最小,且CE+EF的最小值=CF,
    ∵△ABC为等边三角形,边长为6,
    ∴BF=AB=6=3,
    ∴CF===3,
    ∴CE+EF的最小值为3,
    故答案为:3.

    18.如图,∠MON=60°,点A1在射线ON上,且OA1=1,过点A1作A1B1⊥ON交射线OM于点B1,在射线ON上截取A1A2,使得A1A2=A1B1;过点A2作A2B2⊥ON交射线OM于点B2,在射线ON上截取A2A3,使得A2A3=A2B2;…;按照此规律进行下去,则A2020B2020长为 (1+)2019 .

    【分析】解直角三角形求出A1B1,A2B2,A3B3,…,探究规律利用规律即可解决问题.
    【解答】解:在Rt△OA1B1中,∵∠OA1B1=90°,∠MON=60°,OA1=1,
    ∴A1B1=A1A2=OA1•tan60°=,
    ∵A1B1∥A2B2,
    ∴=,
    ∴=,
    ∴A2B2=(1+),
    同法可得,A3B3=(1+)2,

    由此规律可知,A2020B2020=(1+)2019,
    故答案为(1+)2019.
    三.解答题
    19.先化简,再求值:(﹣x)÷,请在0≤x≤2的范围内选一个合适的整数代入求值.
    【考点】6D:分式的化简求值;CC:一元一次不等式组的整数解.
    【专题】11:计算题;513:分式;66:运算能力.
    【分析】先去括号、化除法为乘法进行化简,然后根据分式有意义的条件取x的值,代入求值即可.
    【解答】解:原式=•
    =•
    =﹣2﹣x.
    ∵x≠1,x≠2,
    ∴在0≤x≤2的范围内的整数选x=0.
    当x=0时,原式=﹣2﹣0=﹣2.
    20.随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.
    (1)李老师被分配到“洗手监督岗”的概率为  ;
    (2)用列表法或面树状图法,求李老师和王老师被分配到同一个监督岗的概率.
    【考点】X4:概率公式;X6:列表法与树状图法.
    【专题】543:概率及其应用;69:应用意识.
    【分析】(1)直接利用概率公式计算;
    (2)画树状图展示所有16种等可能的结果,找出李老师和王老师被分配到同一个监督岗的结果数,然后根据概率公式计算.
    【解答】解:(1)李老师被分配到“洗手监督岗”的概率=;
    故答案为:;
    (2)画树状图为:

    共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,
    所以李老师和王老师被分配到同一个监督岗的概率==.
    21.“生活垃圾分类”逐渐成为社会生活新风尚,某学校为了了解学生对“生活垃圾分类”的看法,随机调查了200名学生(每名学生必须选择且只能选择一类看法),调查结果分为“A.很有必要”“B.有必要”“C.无所谓”“D.没有必要”四类.并根据调查结果绘制了图1和图2两幅统计图(均不完整),请根据图中提供的信息,解答下列问题:

    (1)补全条形统计图;
    (2)扇形统计图中“D.没有必要”所在扇形的圆心角度数为 18° ;
    (3)该校共有2500名学生,根据调查结果估计该校对“生活垃圾分类”认为“A.很有必要”的学生人数.
    【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.
    【专题】54:统计与概率;65:数据分析观念.
    【分析】(1)根据扇形统计图中的数据,可以计算出A组的人数,然后再根据条形统计图中的数据,即可得到C组的人数,然后即可将条形统计图补充完整;
    (2)根据条形统计图中D组的人数,可以计算出扇形统计图中“D.没有必要”所在扇形的圆心角度数;
    (3)根据扇形统计图中A组所占的百分比,即可计算出该校对“生活垃圾分类”认为“A.很有必要”的学生人数.
    【解答】解:(1)A组学生有:200×30%=60(人),
    C组学生有:200﹣60﹣80﹣10=50(人),
    补全的条形统计图,如右图所示;
    (2)扇形统计图中“D.没有必要”所在扇形的圆心角度数为:360°×=18°,
    故答案为:18°;
    (3)2500×30%=750(人),
    答:该校对“生活垃圾分类”认为“A.很有必要”的学生有750人.

    22.如图,海中有一个小岛A,它周围10海里内有暗礁,渔船跟踪鱼群由东向西航行,在B点测得小岛A在北偏西60°方向上,航行12海里到达C点,这时测得小岛A在北偏西30°方向上,如果渔船不改变方向继续向西航行,有没有触礁的危险?并说明理由.(参考数据:≈1.73)

    【考点】TB:解直角三角形的应用﹣方向角问题.
    【专题】31:数形结合;554:等腰三角形与直角三角形;55E:解直角三角形及其应用;64:几何直观;68:模型思想;69:应用意识.
    【分析】作高AN,由题意可得∠ABE=60°,∠ACD=30°,进而得出∠ABC=∠BAC=30°,于是AC=BC=12,在在Rt△ANC中,利用直角三角形的边角关系,求出AN与10海里比较即可.
    【解答】 解:没有触礁的危险;
    理由:如图,过点A作AN⊥BC交BC的延长线于点N,
    由题意得,∠ABE=60°,∠ACD=30°,
    ∴∠ACN=60°,∠ABN=30°,
    ∴∠ABC=∠BAC=30°,
    ∴BC=AC=12,
    在Rt△ANC中,AN=AC•cos60°=12×=6,
    ∵AN=6≈10.38>10,
    ∴没有危险.

    23.如图,△ABC中,∠ACB=90°,BO为△ABC的角平分线,以点O为圆心,OC为半径作⊙O与线段AC交于点D.
    (1)求证:AB为⊙O的切线;
    (2)若tanA=,AD=2,求BO的长.

    【考点】KF:角平分线的性质;M2:垂径定理;M5:圆周角定理;ME:切线的判定与性质;T7:解直角三角形.
    【专题】55A:与圆有关的位置关系;67:推理能力.
    【分析】(1)过O作OH⊥AB于H,根据角平分线的性质得到OH=OC,根据切线的判定定理即可得到结论;
    (2)设⊙O的半径为3x,则OH=OD=OC=3x,在解直角三角形即可得到结论.
    【解答】 (1)证明:过O作OH⊥AB于H,
    ∵∠ACB=90°,
    ∴OC⊥BC,
    ∵BO为△ABC的角平分线,OH⊥AB,
    ∴OH=OC,
    即OH为⊙O的半径,
    ∵OH⊥AB,
    ∴AB为⊙O的切线;
    (2)解:设⊙O的半径为3x,则OH=OD=OC=3x,
    在Rt△AOH中,∵tanA=,
    ∴=,
    ∴=,
    ∴AH=4x,
    ∴AO===5x,
    ∵AD=2,
    ∴AO=OD+AD=3x+2,
    ∴3x+2=5x,
    ∴x=1,
    ∴OA=3x+2=5,OH=OD=OC=3x=3,
    ∴AC=OA+OC=5+3=8,
    在Rt△ABC中,∵tanA=,
    ∴BC=AC•tanA=8×=6,
    ∴OB===3.

    24.某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).
    (1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;
    (2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?
    【考点】HE:二次函数的应用.
    【专题】124:销售问题;533:一次函数及其应用;535:二次函数图象及其性质;536:二次函数的应用;66:运算能力;69:应用意识.
    【分析】(1)销售单价为x(元),销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),则为降低了多少个0.5元,再乘以20即为多售出的瓶数,然后加上80即可得出每天的销售量y;
    (2)设每天的销售利润为w元,根据利润等于每天的销售量乘以每瓶的利润,列出w关于x的函数关系式,将其写成顶点式,按照二次函数的性质可得答案.
    【解答】解:(1)由题意得:y=80+20×,
    ∴y=﹣40x+880;
    (2)设每天的销售利润为w元,则有:
    w=(﹣40x+880)(x﹣16)
    =﹣40(x﹣19)2+360,
    ∵a=﹣40<0,
    ∴二次函数图象开口向下,
    ∴当x=19时,w有最大值,最大值为360元.
    答:当销售单价为19元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为880元.
    25.如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.
    (1)如图1,若k=1,则AF与AE之间的数量关系是 AF=AE ;
    (2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)
    (3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.

    【考点】SO:相似形综合题.
    【专题】152:几何综合题;556:矩形 菱形 正方形;55D:图形的相似;66:运算能力;67:推理能力.
    【分析】(1)证明△EAB≌△FAD(AAS),由全等三角形的性质得出AF=AE;
    (2)证明△ABE∽△ADF,由相似三角形的性质得出,则可得出结论;
    (3)①如图1,当点F在DA上时,证得△GDF∽△GBA,得出,求出AG=.由△ABE∽△ADF可得出=,求出AE=.则可得出答案;
    ②如图2,当点F在DC的延长线上时,同理可求出EG的长.
    【解答】解:(1)AE=AF.
    ∵AD=AB,四边形ABCD矩形,
    ∴四边形ABCD是正方形,
    ∴∠BAD=90°,
    ∵AF⊥AE,
    ∴∠EAF=90°,
    ∴∠EAB=∠FAD,
    ∴△EAB≌△FAD(AAS),
    ∴AF=AE;
    故答案为:AF=AE.
    (2)AF=kAE.
    证明:∵四边形ABCD是矩形,
    ∴∠BAD=∠ABC=∠ADF=90°,
    ∴∠FAD+∠FAB=90°,
    ∵AF⊥AE,
    ∴∠EAF=90°,
    ∴∠EAB+∠FAB=90°,
    ∴∠EAB=∠FAD,
    ∵∠ABE+∠ABC=180°,
    ∴∠ABE=180°﹣∠ABC=180°﹣90°=90°,
    ∴∠ABE=∠ADF.
    ∴△ABE∽△ADF,
    ∴,
    ∵AD=kAB,
    ∴,
    ∴,
    ∴AF=kAE.
    (3)解:①如图1,当点F在DA上时,

    ∵四边形ABCD是矩形,
    ∴AB=CD,AB∥CD,
    ∵AD=2AB=4,
    ∴AB=2,
    ∴CD=2,
    ∵CF=1,
    ∴DF=CD﹣CF=2﹣1=1.
    在Rt△ADF中,∠ADF=90°,
    ∴AF===,
    ∵DF∥AB,
    ∴∠GDF=∠GBA,∠GFD=∠GAB,
    ∴△GDF∽△GBA,
    ∴,
    ∵AF=GF+AG,
    ∴AG=.
    ∵△ABE∽△ADF,
    ∴=,
    ∴AE==.
    在Rt△EAG中,∠EAG=90°,
    ∴EG===,
    ②如图2,当点F在DC的延长线上时,DF=CD+CF=2+1=3,

    在Rt△ADF中,∠ADF=90°,
    ∴AF===5.
    ∵DF∥AB,
    ∵∠GAB=∠GFD,∠GBA=∠GDF,
    ∴△AGB∽△FGD,
    ∴=,
    ∵GF+AG=AF=5,
    ∴AG=2,
    ∵△ABE∽△ADF,
    ∴,
    ∴AE=,
    在Rt△EAG中,∠EAG=90°,
    ∴EG===.
    综上所述,EG的长为或.
    26.在平面直角坐标系中,抛物线y=ax2+bx﹣3过点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D.
    (1)求抛物线的解析式;
    (2)点P为直线CD上的一个动点,连接BC;
    ①如图1,是否存在点P,使∠PBC=∠BCO?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由;
    ②如图2,点P在x轴上方,连接PA交抛物线于点N,∠PAB=∠BCO,点M在第三象限抛物线上,连接MN,当∠ANM=45°时,请直接写出点M的坐标.

    【考点】HF:二次函数综合题.
    【专题】16:压轴题;65:数据分析观念.
    【分析】(1)y=ax2+bx﹣3=a(x+3)(x﹣1),即可求解;
    (2)①分点P(P′)在点C的右侧、点P在点C的左侧两种情况,分别求解即可;
    ②证明△AGR≌△RHM(AAS),则点M(m+n,n﹣m﹣3),利用点M在抛物线上和AR=NR,列出等式即可求解.
    【解答】解:(1)y=ax2+bx﹣3=a(x+3)(x﹣1),
    解得:a=1,
    故抛物线的表达式为:y=x2+2x﹣3①;

    (2)由抛物线的表达式知,点C、D的坐标分别为(0,﹣3)、(﹣1,﹣4),
    由点C、D的坐标知,直线CD的表达式为:y=x﹣3;
    tan∠BCO=,则cos∠BCO=;
    ①当点P(P′)在点C的右侧时,

    ∵∠PAB=∠BCO,
    故P′B∥y轴,则点P′(1,﹣2);
    当点P在点C的左侧时,
    设直线PB交y轴于点H,过点H作HN⊥BC于点N,
    ∵∠PAB=∠BCO,
    ∴△BCH为等腰三角形,则BC=2CH•cos∠BCO=2×CH×=,
    解得:CH=,则OH=3﹣CH=,故点H(0,﹣),
    由点B、H的坐标得,直线BH的表达式为:y=x﹣②,
    联立①②并解得:,
    故点P的坐标为(1,﹣2)或(﹣5,﹣8);
    ②∵∠PAB=∠BCO,而tan∠BCO=,
    故设直线AP的表达式为:y=x+s,将点A的坐标代入上式并解得:s=1,
    故直线AP的表达式为:y=x+1,
    联立①③并解得:,故点N(,);
    设△AMN的外接圆为圆R,

    当∠ANM=45°时,则∠ARM=90°,设圆心R的坐标为(m,n),
    ∵∠GRA+∠MRH=90°,∠MRH+∠RMH=90°,
    ∴∠RMH=∠GAR,
    ∵AR=MR,∠AGR=∠RHM=90°,
    ∴△AGR≌△RHM(AAS),
    ∴AG=m+3=RH,RG=﹣n=MH,
    ∴点M(m+n,n﹣m﹣3),
    将点M的坐标代入抛物线表达式得:n﹣m﹣3=(m+n)2+2(m+n)﹣3③,
    由题意得:AR=NR,即(m+3)2=(m﹣)2+()2④,
    联立③④并解得:,
    故点M(﹣,﹣).





    相关试卷

    2023年辽宁省营口市中考数学试卷(含解析):

    这是一份2023年辽宁省营口市中考数学试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年辽宁省营口市中考数学试卷(解析版):

    这是一份2022年辽宁省营口市中考数学试卷(解析版),共37页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 辽宁省营口市2018届中考数学模拟试题(一):

    这是一份初中数学中考复习 辽宁省营口市2018届中考数学模拟试题(一),共9页。试卷主要包含了本试卷分第一部分两部分,二次函数的部分图象如图所示,,如图,直线l,36π18等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map