初中数学中考复习 精品解析:湖南省郴州市2020年中考数学试题(解析版)
展开2020年郴州市初中学业水平考试试卷
数学(试题卷)
第Ⅰ卷(共24分)
一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.如图表示互为相反数的两个点是( )
A. 点与点 B. 点与点 C. 点与点 D. 点与点
【答案】B
【解析】
【分析】
根据一个数的相反数定义求解即可.
【详解】解:在-3,-1,2,3中,3和-3互为相反数,则点A与点D表示互为相反数的两个点.
故选:B.
【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.
2.年月日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心点火升空.北斗卫星导航系统可提供高精度的授时服务,授时精度可达纳秒(秒=纳秒)用科学记数法表示纳秒为( )
A. 秒 B. 秒 C. 秒 D. 秒
【答案】A
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】∵1秒=1000000000纳秒,
∴10纳秒=10÷1000000000秒=0.000 00001秒=1×10-8秒.
故选:A.
【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
3.下列图形是中心对称图形的是( )
A. B.
C. D.
【答案】D
【解析】
【分析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.
【详解】解:A、不是中心对称图形,故此选项不合题意;
B、不是中心对称图形,故此选项不合题意;
C、不是中心对称图形,故此选项不合题意;
D、是中心对称图形,故此选项符合题意;
故选:D.
【点睛】此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.
4.下列运算正确的是( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据积的乘方、同底数幂的乘法、二次根式的减法以及合并同类项法则进行计算得出结果进行判断即可.
【详解】A. ,计算正确,符合题意;
B. ,故本选项错误;
C. ,故本选项错误;
D. 不能计算,故本选项错误;
故选:A.
【点睛】本题综合考查了积的乘方、同底数幂的乘法、二次根式的减法以及合并同类项,熟练掌握运算性质和法则是解答此题的关键.
5.如图,直线被直线所截下列条件能判定的是( )
A. B.
C. D.
【答案】D
【解析】
【分析】
直接利用平行线的判定方法进而分析得出答案.
【详解】A、当∠1=∠3时,c∥d,不能判定a∥b,故此选项不合题意;
B、当∠2+∠4=180°时,c∥d,不能判定a∥b,故此选项不合题意;
C、当∠4=∠5时,c∥d,不能判定a∥b,故此选项不合题意;
D、当∠1=∠2时,a∥b,故此选项符合题意;
故选:D.
【点睛】本题主要考查了平行线的判定,正确掌握判定方法是解题关键.
6.某鞋店试销一种新款男鞋,试销期间销售情况如下表:
鞋的尺码()
销售数量(双)
则该组数据的下列统计量中,对鞋店下次进货最具有参考意义的是( )
A. 中位数 B. 平均数 C. 众数 D. 方差
【答案】C
【解析】
【分析】
鞋店的经理最关心的是各种鞋号的鞋的销售量,特别是销售量最大的鞋号.
【详解】解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.
故选:C.
【点睛】本题考查对统计量的意义的理解与运用,能对统计量进行合理的选择和恰当的运用是解题的关键.
7.如图,将边长为的大正方形剪去一个边长为的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图所示长方形.这两个图能解释下列哪个等式( )
A. B. C. D.
【答案】B
【解析】
【分析】
利用大正方形的面积减去小正方形的面积得到空白部分的面积,然后根据面积相等列出等式即可.
【详解】第一个图形空白部分的面积是x2-1,
第二个图形的面积是(x+1)(x-1).
则x2-1=(x+1)(x-1).
故选:B.
【点睛】本题考查了平方差公式的几何背景,正确用两种方法表示空白部分的面积是解决问题的关键.
8.在平面直角坐标系中,点是双曲线上任意一点,连接,过点作的垂线与双曲线交于点,连接.已知,则( )
A. B. C. D.
【答案】B
【解析】
【分析】
分别作AE⊥x轴,BF⊥x轴,垂足分别为E,F,证明△AOE∽△OBF得到,结合反比例函数的系数的几何意义即可得到答案.
【详解】解:过A作AE⊥x轴,过B作BF⊥x轴,垂足分别为E,F,如图,
则∠AEO=∠BFO=90°,
∴∠AOE+∠OAE=90°,
∵∠AOB=90°,
∴∠BOF+∠AOE=90°,
∴∠OAE=∠BOF,
∴△AOE∽△OBF,
∴,即,
∴
∵,,
∴.
故选:B.
【点睛】本题主要考查反比例函数系数的几何意义及相似三角形的判定与性质、三角形的面积,利用相似三角形的判定与性质表示出是解题的关键.
第Ⅱ卷(共106分)
二、填空题(每题3分,满分24分,将答案填在答题纸上)
9.若分式的值不存在,则__________.
【答案】-1
【解析】
【分析】
根据分式无意义的条件列出关于x的方程,求出x的值即可.
【详解】∵分式的值不存在,
∴x+1=0,
解得:x=-1,
故答案为:-1.
【点睛】本题考查的是分式无意义的条件,熟知分式无意义的条件是分母等于零是解答此题的关键.
10.已知关于的一元二次方程有两个相等的实数根,则__________.
【答案】
【解析】
【分析】
利用判别式的意义得到,然后解关于c的方程即可.
【详解】∵,,,
根据题意得,
解得,
故答案为:.
【点睛】本题考查了根的判别式:一元二次方程()的根与有如下关系:当>0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当<0时,方程无实数根.
11.质检部门从件电子元件中随机抽取件进行检测,其中有件是次品.试据此估计这批电子元件中大约有__________件次品.
【答案】20
【解析】
【分析】
先求出次品所占的百分比,再根据生产这种零件1000件,直接相乘得出答案即可.
【详解】∵随机抽取100件进行检测,检测出次品2件,
∴次品所占的百分比是:,
∴这一批次产品中的次品件数是::(件),
故答案为:20.
【点睛】本题主要考查了用样本估计总体,根据出现次品的数量求出次品所占的百分比是解题关键.
12.某人学习小组在寒假期间进行线上测试,其成绩(分)分别为:,方差为.后来老师发现每人都少加了分,每人补加分后,这人新成绩的方差__________.
【答案】80
【解析】
【分析】
根据一组数据中的每一个数据都加上同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.
【详解】∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,方差不变,
∴所得到的一组新数据的方差为S新2=8.0;
故答案为:8.0.
【点睛】本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.
13.小红在练习仰卧起坐,本月日至日的成绩与日期具有如下关系:
日期(日)
成绩(个)
小红的仰卧起坐成绩y与日期之间近似为一次函数关系,则该函数表达式为__________.
【答案】y=3x+37.
【解析】
【分析】
利用待定系数法即可求出该函数表达式.
【详解】解:设该函数表达式为y=kx+b,根据题意得:
,
解得,
∴该函数表达式为y=3x+37.
故答案为:y=3x+37.
【点睛】本题考查了一次函数的应用,会利用待定系数法求出一次函数的解析式是解题的关键.
14.在平面直角坐标系中,将以点为位似中心,为位似比作位似变换,得到.已知,则点的坐标是__________.
【答案】.
【解析】
【分析】
直接利用位似图形的性质进而得出对应点坐标即可.
【详解】解:∵将△AOB以点O为位似中心,为位似比作位似变换,得到△A1OB1,A(2,3),
∴点A1的坐标是:,
即A1.
故答案为:.
【点睛】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.
15.如图,圆锥的母线长为,侧面展开图的面积为,则圆锥主视图的面积为__________.
【答案】48
【解析】
【分析】
圆锥的主视图是等腰三角形,根据圆锥侧面积公式S=πrl代入数据求出圆锥的底面半径长,再由勾股定理求出圆锥的高即可.
【详解】根据圆锥侧面积公式:S=πrl,圆锥的母线长为10,侧面展开图的面积为60π,
故60π=π×10×r,
解得:r=6.
由勾股定理可得圆锥的高==8
∵圆锥主视图是一个底边为12,高为8的等腰三角形,
∴它的面积=,
故答案为:48
【点睛】本题考查了三视图的知识,圆锥侧面积公式的应用,正确记忆圆锥侧面积公式是解题关键.
16.如图,在矩形中,.分别以点为圆心,以大于的长为半径画弧,两弧相交于点和.作直线分别与交于点,则__________.
【答案】2.
【解析】
【分析】
连接DN,在矩形ABCD中,AD=4,AB=8,根据勾股定理可得BD的长,根据作图过程可得,MN是BD的垂直平分线,所以DN=BN,在Rt△ADN中,根据勾股定理得DN的长,在Rt△DON中,根据勾股定理得ON的长,进而可得MN的长.
【详解】如图,连接DN,
在矩形ABCD中,AD=4,AB=8,
∴BD=,
根据作图过程可知:
MN是BD的垂直平分线,
∴DN=BN,OB=OD=2,
∴AN=AB-BN=AB-DN=8-DN,
在Rt△ADN中,根据勾股定理,得
DN2=AN2+AD2,
∴DN2=(8-DN)2+42,
解得DN=5,
在Rt△DON中,根据勾股定理,得
ON=,
∵CD∥AB,
∴∠MDO=∠NBO,
∠DMO=∠BNO,
∵OD=OB,
∴△DMO≌△BNO(AAS),
∴OM=ON=,
∴MN=2.
故答案为:2.
【点睛】本题考查了作图-基本作图、线段垂直平分线的性质、勾股定理、矩形的性质,解决本题的关键是掌握线段垂直平分线的性质.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
17.计算:
【答案】1
【解析】
【分析】
根据负整指数幂的性质,特殊角的三角函数值,绝对值,零指数幂的性质,直接计算即可.
【详解】
.
【点睛】本题主要考查了实数的混合运算,包含零指数幂,负整数指数幂,绝对值及特殊角的余弦值等,灵活运用是解题关键.
18.解方程:
【答案】x=3.
【解析】
【分析】
观察可得方程最简公分母为(x2-1),去分母,转化为整式方程求解,结果要检验.
【详解】解:
去分母得,
解得,x=3,
经检验,x=3是原方程的根,
所以,原方程的根为:x=3.
【点睛】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要检验.
19.如图,在菱形中,将对角线分别向两端延长到点和,使得.连接.求证:四边形是菱形.
【答案】见解析
【解析】
【分析】
连接BD,由菱形ABCD的性质得出OA=OC,OB=OD,AC⊥BD,得出OE=OF,证出四边形BEDF是平行四边形,再由EF⊥BD,即可证出四边形BEDF是菱形.
【详解】证明:连接BD,交AC于O,如图所示:
∵四边形ABCD是菱形,
∴OA=OC,OB=OD,AC⊥BD,
∵AE=CF,
∴OE=OF,
∴四边形BEDF是平行四边形,
∵EF⊥BD,
∴四边形BEDF是菱形.
【点睛】本题考查了菱形的判定与性质,平行四边形的判定和性质,解决本题的关键是掌握菱形的判定与性质.
20.疫情期间,我市积极开展“停课不停学”线上教学活动,并通过电视、手机等平台进行教学视频推送.某校随机抽取部分学生进行线上学习效果自我评价的调查(学习效果分为:.效果很好;.效果较好;.效果一般;.效果不理想)并根据调查结果绘制了如下两幅不完整的统计图:
(1)此次调查中,共抽查了 名学生;
(2)补全条形统计图,并求出扇形统计图中∠a的度数;
(3)某班人学习小组,甲、乙人认为效果很好,丙认为效果较好,丁认为效果一般.从学习小组中随机抽取人,则“人认为效果很好,人认为效果较好”的概率是多少?(要求画树状图或列表求概率)
【答案】(1)200;(2)补全条形统计图见解析,72°;(3) .
【解析】
【分析】
(1)用评价为“效果很好”的人数除以评价为“效果很好”的人数所占百分比即可得到抽查的总人数;
(2)首先求出评价为“效果一般”的人数,再补全条形统计图;用评价为“效果一般”的人数除以抽查的总人数,得到评价为“效果一般”的人数所占百分比乘以360°可得到∠∝;
(3)用A,B,C,D分别表示甲,乙,丙,丁四人,画出树状图(或列表)表示所有等可能的情况数,得到“人认为效果很好,人认为效果较好”结果数,进而用概率公式求解即可.
【详解】(1)80÷40%=200(人),
故答案为:200;
(2)“C”的人数为:200-80-60-20=40(人),
补全条形统计图如下:
∠∝=;
(3)用A,B,C,D分别表示甲,乙,丙,丁,
①画树状图如下:
共有12种可能出现的结果,其中“人认为效果很好,人认为效果较好”的有2种,
∴P(人认为效果很好,人认为效果较好)=;
②列表如下
认为效果很好
认为效果较好
A
B
C
D
A
AB
AC
AD
B
BA
BC
BD
C
CA
CB
CD
D
DA
DB
DC
共有12种可能出现的结果,其中“人认为效果很好,人认为效果较好”的有2种,
∴P(人认为效果很好,人认为效果较好)=;
【点睛】本题考查了从条形统计图和扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键,要把两图形结合在一起进行解答. 同时还考查了画树状图或列表求概率.
21.年月日,为我国载人空间站工程研制的长征五号运较火箭在海南文昌首飞成功.运载火箭从地面处发射、当火箭到达点时,地面处的雷达站测得米,仰角为.3秒后,火箭直线上升到达点处,此时地面处的雷达站测得处的仰角为.已知两处相距米,求火箭从到处的平均速度(结果精确到米,参考数据:)
【答案】火箭从A到B处的平均速度为335米/秒.
【解析】
【分析】
设火箭从A到B处的平均速度为x米/秒,根据题意可得AB=3x,在Rt△ADO中,∠ADO=30°,AD=4000,可得AO=2000,DO=2000,在Rt△BOC中,∠BCO=45°,可得BO=OC,即可得2000+3x=2000-460,进而解得x的值.
【详解】解:设火箭从A到B处平均速度为x米/秒,根据题意可知:
AB=3x,
在Rt△ADO中,∠ADO=30°,AD=4000,
∴AO=2000,
∴DO=2000,
∵CD=460,
∴OC=OD-CD=2000-460,
在Rt△BOC中,∠BCO=45°,
∴BO=OC,
∵OB=OA+AB=2000+3x,
∴2000+3x=2000-460,
解得x≈335(米/秒).
答:火箭从A到B处的平均速度为335米/秒.
【点睛】本题考查了解直角三角形的应用-仰角俯角问题,解决本题的关键是掌握仰角俯角定义.
22.为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共吨,甲物资单价为万元/吨,乙物资单价为万元吨,采购两种物资共花费万元.
(1)求甲、乙两种物资各采购了多少吨?
(2)现在计划安排两种不同规格的卡车共辆来运输这批物资.甲物资吨和乙物资吨可装满一辆型卡车;甲物资吨和乙物资吨可装满一辆型卡车.按此要求安排两型卡车的数量,请问有哪几种运输方案?
【答案】(1)甲物资采购了300吨,乙物质采购了240吨;(2)共有3种运输方案,方案1:安排25辆A型卡车,25辆B型卡车;方案2:安排26辆A型卡车,24辆B型卡车;方案3:安排27辆A型卡车,23辆B型卡车.
【解析】
【分析】
(1)设甲物资采购了x吨,乙物质采购了y吨,根据“某省红十字会采购甲、乙两种抗疫物资共540吨,且采购两种物资共花费1380万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设安排A型卡车m辆,则安排B型卡车(50-m)辆,根据安排的这50辆车一次可运输300吨甲物质及240吨乙物质,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各运输方案.
【详解】解:(1)设甲物资采购了x吨,乙物质采购了y吨,
依题意,得:,
解得:.
答:甲物资采购了300吨,乙物质采购了240吨.
(2)设安排A型卡车m辆,则安排B型卡车(50-m)辆,
依题意,得:,
解得:25≤m≤27.
∵m为正整数,
∴m可以为25,26,27,
∴共有3种运输方案,方案1:安排25辆A型卡车,25辆B型卡车;方案2:安排26辆A型卡车,24辆B型卡车;方案3:安排27辆A型卡车,23辆B型卡车.
【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.
23.如图,内接于⊙,是⊙的直径.直线与⊙相切于点,在上取一点使得.线段,的延长线交于点.
(1)求证:直线是⊙的切线;
(2)若,,求阴影部分的面积(结果保留).
【答案】(1)见解析;(2)
【解析】
【分析】
(1)连接OC,根据OA=OC,DA=DC可得∠OAC=∠OCA,∠DAC=∠DCA,再根据直线与⊙相切于点可得∠DAO=90°,进而可得∠DCO=90°,由此可证得直线是⊙的切线;
(2)先证明BOC为等边三角形,可得OB=OC=BC=2,根据扇形面积公式可求得,再利用含30°的直角三角形的性质及勾股定理可求得,由此可求得,最后便可得.
【详解】(1)证明:连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵DA=DC,
∴∠DAC=∠DCA,
∵直线与⊙相切于点,
∴∠DAO=90°,
∴∠DAC+∠OAC=90°,
∴∠DCA+∠OCA=90°,
∴∠DCO=90°,
∴OC⊥DC,
又∵点C在⊙上,
∴直线是⊙的切线;
(2)解:∵∠CAB=30°,
∴∠COB=2∠CAB=60°,
又∵OB=OC,
∴BOC为等边三角形,
∴OB=OC=BC=2,
∴,
∵∠OCE=90°,∠COB=60°,
∴∠E=90°-∠COB=30°,
∴OE=2OC=4,
∴在RtCOE中,,
∴
,
∴
∴阴影部分的面积为.
【点睛】本题考查了切线的性质与判定、扇形的面积公式以及含30°的直角三角形的性质,勾股定理,熟练掌握切线的性质与判定、扇形的面积公式是解决本题的关键.
24.为了探索函数的图象与性质,我们参照学习函数的过程与方法.
列表:
描点:在平面直角坐标系中,以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点,如图所示:
(1)如图,观察所描出点的分布,用一条光滑曲线将点顺次连接起来,作出函数图象;
(2)已知点在函数图象上,结合表格和函数图象,回答下列问题:
若,则 ;
若,则 ;
若,则 (填“>”,“=”,“<”).
(3)某农户要建造一个图所示的长方体形无盖水池,其底面积为平方米,深为米.已知底面造价为千元/平方米,侧面造价为千元/平方米,设水池底面一边的长为米,水池总造价为千元.
①请写出与的函数关系式;
②若该农户预算不超过千元,则水池底面一边的长应控制在什么范围内?
【答案】(1)见解析;(2)>;<;=;(3)①;②.
【解析】
【分析】
(1)用一条光滑曲线将点顺次连接起来,作出函数图象即可;
(2)观察函数图象可以看出有最低点,即函数有最小值,结合表格提供的信息即可解决问题;
(3)①根据底面面积可求出底面另一条边长,进而可求出水池的侧面积,分别表示出底面和侧面的造价,从而可表示出与的函数关系式;
②根据函数关系式结合表格可得出x的控制范围.
【详解】(1)如图1所示;
(2)根据图象和表格可知,当时,>;当,则<;当,则=;
(3)①∵底面面积为1平方米,一边长为x米,
∴与之相邻的另一边长为米,
∴水池侧面面积的和为:
∵底面造价为千元/平方米,侧面造价为千元/平方米,
∴
即:与的函数关系式为:;
②∵该农户预算不超过千元,即y≤3.5
∴
∴,
根据图象或表格可知,当2≤y≤2.5时,,
因此,该农户预算不超过千元,则水池底面一边的长应控制在.
【点睛】本题考查反比例函数的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
25.如图,在等腰直角三角形中,.点是的中点,以为边作正方形,连接.将正方形绕点顺时针旋转,旋转角为.
(1)如图,在旋转过程中,
①判断与是否全等,并说明理由;
②当时,与交于点,求的长.
(2)如图,延长交直线于点.
①求证:;
②在旋转过程中,线段的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
【答案】(1)①全等,证明见解析;②;(2)①证明见解析;②.
【解析】
【分析】
(1)①由等腰直角三角形性质和正方形性质根据全等三角形判定定理(SAS)即可证明;②过A点作AM⊥GD,垂足为M,交FE与N,利用等腰三角形三线合一性质构造直角三角形,由勾股定理求出AM的长,进而得出,再由求出结果;
(2)①根据全等三角形性质可得,再在和中由三角形内角和定理得出,从而证明结论;②根据∠APC=90°得出PC最大值是∠GAD最大时,即GD⊥AG时,进而可知CEF三点共线,F与P重合,求出此时CE长,继而可得CP最大值.
【详解】解:(1)①全等,理由如下:
在等腰直角三角形中,AD=CD,,
在正方形中,GD=ED,,
又∵,,
∴
在和中,
,
∴(SAS);
②如解图2,过A点作AM⊥GD,垂足为M,交FE与N,
∵点是的中点,
∴在正方形中,DE=GD=GF=EF=2,
由①得,
∴,
又∵,
∴,
∵AM⊥GD,
∴,
又∵ ,
∴四边形GMNF是矩形,
∴,
在中,,
∴
∵,
∴
∴,
∴.
(2)①由①得,
∴,
又∵,
∴,
∴,即:;
②∵,
∴,
∴当最大时,PC最大,
∵∠DAC=45°,是定值,
∴最大时,最大,PC最大,
∵AD=4,GD=2,
∴当GD⊥AG,最大,如解图3,
此时,
又∵,,
∴F点与P点重合,
∴CEFP四点共线,
∴CP=CE+EF=AG+EF=,
∴线段得最大值为:.
【点睛】本题考查了三角形的综合;涉及了全等三角形的判定与性质,正方形的性质,勾股定理,解直角三角形等知识,能够准确画出旋转后满足条件的两个图形,构造直角三角形求解是关键.
26.如图,抛物线与轴交于,与轴交于点.已知直线过两点.
(1)求抛物线和直线的表达式;
(2)点是抛物线上的一个动点,
①如图,若点在第一象限内,连接,交直线于点.设的面积为,的面积为,求的最大值;
②如图2,抛物线的对称轴与轴交于点,过点作,垂足为.点是对称轴上的一个动点,是否存在以点为顶点的四边形是平行四边形?
若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1),;(2)①;②存在,点P的坐标为(2,),点Q的坐标为(1,2)或(1,)
【解析】
【分析】
(1)把A(-1,0),B(3,0)代入可求得抛物线表达式,再求得点C的坐标,把B(3,0),C的坐标代入即可求解;
(2)①设点D的坐标为(,),利用待定系数法求得直线PA的表达式为,解方程,求得点P的横坐标为,利用平等线分线段成比例定理求得,得到,利用二次函数的性质即可求解;
②根据等腰直角三角形的性质求得点的坐标为(2,),分当EF为边和EF为对角线时两种情况讨论,即可求解.
【详解】(1)把A(-1,0),B(3,0)代入得:
,
解得:,
∴抛物线的表达式为,
令,则,
∴点C的坐标为(0,3),
把B(3,0),C(0,3)代入得:
,
解得:,
∴直线的表达式为;
(2)①∵PA交直线BC于点,
∴设点D的坐标为(,),
设直线PA的表达式为,
∴,
解得:,
∴直线PA的表达式为,
∴,
整理得:,
解得:(不合题意,舍去),
∴点D的横坐标为,点P的横坐标为,
分别过点D、P作x轴的垂线,垂足分别为M、N,如图:
∴DM∥PN,OM=,ON=,OA=1,
∴
,
∵,
∴当时,分子取得最大值,即有最大值,最大值为;
②存在,理由如下:
作于G,如图,
∵的对称轴为:,
∴OE=1,
∵B(3,0),C(0,3)
∵OC=OB=3,∠OCB=90,
∴△OCB是等腰直角三角形,
∵∠EFB=90,BE=OB-OE=2,
∴△OCB是等腰直角三角形,
∴EG=GB=EG=1,
∴点的坐标为(2,),
当EF为边时,
∵EFPQ为平行四边形,
∴QE=PF,QE∥PF∥轴,
∴点P的横坐标与点F的横坐标同为2,
当时,,
∴点P的坐标为(2,),
∴QE=PF=3-1=2,
点Q的坐标为(1,2);
当EF为对角线时,如图,
∵四边形PEQF平行四边形,
∴QE=PF,QE∥PF∥轴,
同理求得:点P的坐标为(2,),
∴QE=PF=3-1=2,
点Q的坐标为(1,);
综上,点P的坐标为(2,),点Q的坐标为(1,2)或(1,);
【点睛】本题主要考查了一元二次方程的解法,待定系数法求二次函数解析式,等腰直角三角形的判定和性质,平行线公线段成比例定理,等高的三角形的面积的比等于底边的比,二次函数的性质以及平行四边形的对边的判定和性质,(3)注意要分AB是对角线与边两种情况讨论.
本试卷的题干、答案和解析均由组卷网(http://zujuan.xkw.com)专业教师团队编校出品。
登录组卷网可对本试卷进行单题组卷、细目表分析、布置作业、举一反三等操作。
试卷地址:在组卷网浏览本卷
组卷网是学科网旗下的在线题库平台,覆盖小初高全学段全学科、超过900万精品解析试题。
关注组卷网服务号,可使用移动教学助手功能(布置作业、线上考试、加入错题本、错题训练)。
学科网长期征集全国最新统考试卷、名校试卷、原创题,赢取丰厚稿酬,欢迎合作。
钱老师 QQ:537008204 曹老师 QQ:713000635
初中数学中考复习 精品解析:湖南省永州市2020年中考数学试题(解析版): 这是一份初中数学中考复习 精品解析:湖南省永州市2020年中考数学试题(解析版),共28页。试卷主要包含了本试题卷共三道大题,26个小题等内容,欢迎下载使用。
初中数学中考复习 精品解析:湖南省湘西州市2020年中考数学试题(解析版): 这是一份初中数学中考复习 精品解析:湖南省湘西州市2020年中考数学试题(解析版),共29页。试卷主要包含了下列各数中,比小的数是,27×104,下列运算正确的是等内容,欢迎下载使用。
初中数学中考复习 精品解析:湖南省湘潭市 2020年中考数学试题(解析版): 这是一份初中数学中考复习 精品解析:湖南省湘潭市 2020年中考数学试题(解析版),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。