初中数学中考复习 精品解析:2022年四川省内江市中考数学真题(解析版)
展开2022年四川省内江市中考数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1. ﹣6的相反数是( )
A. ﹣6 B. ﹣ C. 6 D.
【答案】C
【解析】
【分析】根据相反数的定义,即可解答.
【详解】−6的相反数是:6,
故选C.
2. 某4S店今年1~5月新能源汽车的销量(辆数)分别如下:25,33,36,31,40,这组数据的平均数是( )
A. 34 B. 33 C. 32.5 D. 31
【答案】B
【解析】
【分析】根据算术平均数的计算方法进行计算即可.
【详解】解:这组数据的平均数为:=33(辆),
故选:B.
【点睛】本题考查平均数,掌握算术平均数的计算方法是正确计算的关键.
3. 下列运算正确的是( )
A. a2+a3=a5 B. (a3)2=a6
C. (a﹣b)2=a2﹣b2 D. x6÷x3=x2
【答案】B
【解析】
【分析】根据合并同类项法则,幂的乘方和同底数幂的除法法则,完全平方公式,进行判断即可.
【详解】A.a2和a3不是同类项,不能合并,故A不符合题意;
B.(a3)2=a6,故B符合题意;
C.(a﹣b)2=a2﹣2ab+b2,故C不符合题意;
D.x6÷x3=x6﹣3=x3,故D不符合题意.
故选:B.
【点睛】本题主要考查了整式的运算,熟练掌握合并同类项法则,幂的乘方和同底数幂的除法法则,完全平方公式,是解题的关键.
4. 2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可.
【详解】A.不是轴对称图形,也不是中心对称图形,故A错误;
B.不是轴对称图形,也不是中心对称图形,故B错误;
C.既是轴对称图形,也是中心对称图形,故C正确;
D.不是轴对称图形,也不是中心对称图形,故D错误.
故选:C.
【点睛】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
5. 下列说法错误的是( )
A. 打开电视机,中央台正在播放发射神舟十四号载人飞船的新闻,这是随机事件
B. 要了解小王一家三口的身体健康状况,适合采用抽样调查
C. 一组数据的方差越小,它的波动越小
D. 样本中个体的数目称为样本容量
【答案】B
【解析】
【分析】根据随机事件的定义、全面调查的意义、方差的意义以及样本容量的定义进行判定即可.
【详解】解:A.打开电视机,中央台正在播放发射神舟十四号载人飞船的新闻,这是随机事件,故A选项不符合题意;
B.要了解小王一家三口的身体健康状况,适合采用全面调查调查,故B选项符合题意;
C.一组数据的方差越小,它的波动越小,故C选项不符合题意;
D.样本中个体的数目称为样本容量,故D选项不符合题意.
故选:B.
【点睛】本题考查统计的相关定义,掌握其定义和意义是解决问题关键.
6. 如图是正方体的表面展开图,则与“话”字相对的字是( )
A. 跟 B. 党 C. 走 D. 听
【答案】C
【解析】
【分析】根据正方体表面展开图的特征进行判断即可.
【详解】解:由正方体表面展开图的“相间、Z端是对面”可知,
“话”与“走”是对面,
故答案为:C.
【点睛】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.
7. 如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为( )
A. 2 B. 4 C. 6 D. 8
【答案】B
【解析】
【分析】根据平行四边形的性质及角平分线的性质可得∠CBM=∠CMB,利用等边对等角即可得MC=BC=8,进而可求解.
【详解】解:∵四边形ABCD是平行四边形,
∴CD=AB=12,BC=AD=8,AB∥CD,
∴∠ABM=∠CMB,
∵BM是∠ABC的平分线,
∴∠ABM=∠CBM,
∴∠CBM=∠CMB,
∴MC=BC=8,
∴DM=CD﹣MC=12﹣8=4,
故选:B.
【点睛】本题考查了平行四边形的性质和角平分线的性质,掌握其相关性质是解题的关键.
8. 如图,数轴上的两点A、B对应的实数分别是a、b,则下列式子中成立的是( )
A. 1﹣2a>1﹣2b B. ﹣a<﹣b C. a+b<0 D. |a|﹣|b|>0
【答案】A
【解析】
【分析】根据数轴得出a<b,根据不等式的性质对四个选项依次分析即可得到答案.
【详解】解:由题意得:a<b,
∴﹣2a>﹣2b,
∴1﹣2a>1﹣2b,
∴A选项的结论成立;
∵a<b,
∴﹣a>﹣b,
∴B选项的结论不成立;
∵﹣2<a<﹣1,2<b<3,
∴,
∴,
∴a+b>0,
∴C选项的结论不成立;
∵
∴,
∴D选项的结论不成立.
故选:A.
【点睛】本题考查数轴、不等式、绝对值的性质,解题的关键是熟练掌握数轴、不等式、绝对值的相关知识.
9. 如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是( )
A. △ABC绕点C逆时针旋转90°,再向下平移1个单位
B. △ABC绕点C顺时针旋转90°,再向下平移1个单位
C. △ABC绕点C逆时针旋转90°,再向下平移3个单位
D. △ABC绕点C顺时针旋转90°,再向下平移3个单位
【答案】D
【解析】
【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.
【详解】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.
故选:D.
【点睛】本题考查的是坐标与图形变化,旋转和平移的知识,掌握旋转和平移的概念和性质是解题的关键.
10. 如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数和的图象交于P、Q两点.若S△POQ=15,则k的值为( )
A. 38 B. 22 C. ﹣7 D. ﹣22
【答案】D
【解析】
【分析】设点P(a,b),Q(a,),则OM=a,PM=b,MQ=,则PQ=PM+MQ=,再根据ab=8,S△POQ=15,列出式子求解即可.
【详解】解:设点P(a,b),Q(a,),则OM=a,PM=b,MQ=,
∴PQ=PM+MQ=.
∵点P在反比例函数y=的图象上,
∴ab=8.
∵S△POQ=15,
∴PQ•OM=15,
∴a(b﹣)=15.
∴ab﹣k=30.
∴8﹣k=30,
解得:k=﹣22.
故选:D.
【点睛】本题主要考查了反比例函数与几何综合,熟练掌握反比例函数的相关知识是解题的关键.
11. 如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为( )
A. 4, B. 3,π C. 2, D. 3,2π
【答案】D
【解析】
【分析】连接、,证出是等边三角形,根据勾股定理求出,再由弧长公式求出弧的长即可.
【详解】解:连接、,
六边形为正六边形,
,
,
为等边三角形,
,
,
,
的长为.
故选:D.
【点睛】本题考查的是正六边形的性质、等边三角形的判定与性质、勾股定理,熟练掌握正六边形的性质,由勾股定理求出是解决问题的关键.
12. 如图,抛物线y=ax2+bx+c与x轴交于两点(x1,0)、(2,0),其中0<x1<1.下列四个结论:①abc<0;②a+b+c>0;③2a﹣c>0;④不等式ax2+bx+c>﹣x+c解集为0<x<x1.其中正确结论的个数是( )
A. 4 B. 3 C. 2 D. 1
【答案】C
【解析】
【分析】根据函数图象可得出a,b,c的符号即可判断①,当x=1时,y<0即可判断②;根据对称轴为,a>0可判断③;y1=ax2+bx+c,数形结合即可判断④.
【详解】解:∵抛物线开口向上,对称轴在y轴右边,与y轴交于正半轴,
∴a>0,b<0,c>0,
∴abc<0,
∴①正确.
∵当x=1时,y<0,
∴a+b+c<0,
∴②错误.
∵抛物线y=ax2+bx+c与x轴交于两点(x1,0)、(2,0),其中0<x1<1,
∴,
∴,
当时,,
当时,,
,
,
∴2a﹣c>0,
∴③正确;
如图:
设y1=ax2+bx+c,,
由图值,y1>y2时,x<0或x>x1,
故④错误.
故选:C.
【点睛】本题考查了二次函数的图象及性质,根据二次函数的图象及性质巧妙借助数学结合思想解决问题是解题的关键.
二、填空题(本大题共4小题,每小题5分,共20分.)
13. 函数中,自变量的取值范围是 .
【答案】.
【解析】
【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.
【详解】依题意,得x-3≥0,
解得:x≥3.
【点睛】本题考查的知识点为:二次根式的被开方数是非负数.
14. 如图,在⊙O中,∠ABC=50°,则∠AOC等于_____
【答案】100°
【解析】
【详解】试题分析:在同圆或等圆中,相等的弧所对的圆心角等于圆周角度数的2倍.根据题意可得:∠AOC=2∠ABC=2×50°=100°.
考点:圆周角和圆心角
15. 对于非零实数a,b,规定a⊕b=,若(2x﹣1)⊕2=1,则x的值为 _____.
【答案】
【解析】
【分析】根据题意列出方程,解方程即可求解.
【详解】解:由题意得:
=1,
等式两边同时乘以得,
,
解得:,
经检验,x=是原方程的根,
∴x=,
故答案为:.
【点睛】本题考查了解分式方程,掌握分式方程的一般解法是解题的关键.
16. 勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=_____.
【答案】48
【解析】
【分析】设八个全等的直角三角形的长直角边为a,短直角边是b,然后分别求出S1、S2、S3,即可得到答案.
【详解】解:设八个全等的直角三角形的长直角边为a,短直角边是b,则:
S1=(a+b)2,S2=42=16,S3=(a﹣b)2,
且:a2+b2=EF2=16,
∴S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16
=2×16+16
=48.
故答案为:48.
【点睛】本题考查了正方形的面积,勾股定理的应用,解题的关键是利用直角三角形两直角边与三个正方形的面积的关系,可寻找出三正方形面积之间的关系.
三、解答题(本大题共5小题,共44分.解答应写出必要的文字说明或推演步骤.)
17. (1)计算:;
(2)先化简,再求值:()÷,其中a=﹣,b=+4.
【答案】(1)2;(2),
【解析】
【分析】(1)首先代入特殊角的三角函数值,进行乘方、绝对值运算,再进行乘法和加法运算;
(2)首先把分式化简,再代入a和b的值计算.
【详解】解:(1)原式=
=+2﹣
=2;
(2)原式=[]•
=
=.
当a=﹣,b=+4时,
原式= .
【点睛】本题考查二次根式的混合运算、分式的化简求值、特殊角的三角函数值以及负整数指数幂的运算,掌握解题步骤是解决问题的关键.
18. 如图,中,E、F是对角线BD上两个点,且满足BE=DF.
(1)求证:△ABE≌△CDF;
(2)求证:四边形AECF是平行四边形.
【答案】证明见解析
【解析】
【分析】(1)根据平行四边形的性质可以得到AB//CD,AB=CD,再证明角相等,用SAS证明两个三角形全等即可.
(2)用(1)中全等三角形的结论我们得到边相等,角相等,再去证明平行.用一组对边平行且相等证明四边形是平行四边形.
【详解】证明:(1) 四边形ABCD是平行四边形,
AB//CD,AB=CD,
,
在和中
,
.
(2)由(1)可知,,
,
AE//CF,
四边形AECF是平行四边形.
【点睛】本题考查了全等三角形的判定与性质,平行四边形的判定与性质.平行四边形的判定方法共5种,平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.
19. 为让同学们了解新冠病毒的危害及预防措施,某中学举行了“新冠病毒预防”知识竞赛.数学课外活动小组将八(1)班参加本校知识竞赛的40名同学的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组进行统计,并绘制了下列不完整的统计图表:
分数段
频数
频率
74.5﹣79.5
2
0.05
79.5﹣84.5
8
n
84.5﹣89.5
12
0.3
89.5﹣94.5
m
0.35
94.5﹣99.5
4
0.1
(1)表中m= ,n= ;
(2)请补全频数分布直方图;
(3)本次知识竞赛中,成绩在94.5分以上的选手,男生和女生各占一半,从中随机确定2名学生参加颁奖,请用列表法或树状图法求恰好是一名男生和一名女生的概率.
【答案】(1)14;0.2
(2)见解析 (3)
【解析】
【分析】(1)根据总数为40,频率为0.35,求出m,根据频数为8,总数为40,求出频率n;
(2)根据89.5﹣94.5的频数为14,补全频数分布直方图即可;
(3)先根据题意画出树状图,然后根据概率公式进行计算即可.
【小问1详解】
解:m=40×35%=14,n=8÷40=0.2.
故答案为:14,0.2.
【小问2详解】
补全频数分布直方图如下:
【小问3详解】
∵成绩在94.5分以上的选手有4人,男生和女生各占一半,
∴2名是男生,2名是女生,
画树状图如下:
共有12种等可能的结果,其中确定的2名学生恰好是一名男生和一名女生的结果有8种,
∴确定的2名学生恰好是一名男生和一名女生的概率为.
【点睛】本题主要考查了频数分布直方图,画树状图或列表格求概率,根据题意画出树状图或列出表格是解题的关键.
20. 如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.
(1)求河的宽度;
(2)求古树A、B之间的距离.(结果保留根号)
【答案】(1)(30+30)米;
(2)20米.
【解析】
【分析】(1)过点A作AE⊥l于点E,设CE=x,在Rt△ADE中可表示出DE,在Rt△ACE中可表示出AE,通过解直角三角形ADE求出x即可;
(2)过点B作BF⊥l,垂足为F,继而得出CE的长,在Rt△BCF中,求出CF,继而可求出AB.
【小问1详解】
解:过点A作AE⊥l,垂足为E,
设CE=x米,
∵CD=60米,
∴DE=CE+CD=(x+60)米,
∵∠ACB=15°,∠BCD=120°,
∴∠ACE=180°﹣∠ACB﹣∠BCD=45°,
在Rt△AEC中,AE=CE•tan45°=x(米),
在Rt△ADE中,∠ADE=30°,
∴tan30°===,
∴x=30+30,
经检验:x=30+30是原方程的根,
∴AE=(30+30)米,
∴河的宽度为(30+30)米;
【小问2详解】
过点B作BF⊥l,垂足为F,
则CE=AE=BF=(30+30)米,AB=EF,
∵∠BCD=120°,
∴∠BCF=180°﹣∠BCD=60°,
在Rt△BCF中,CF===(30+10)米,
∴AB=EF=CE﹣CF=30+30﹣(30+10)=20(米),
∴古树A、B之间的距离为20米.
【点睛】本题考查解直角三角形的实际应用,解决问题的关键是通过作高构造直角三角形,利用直角三角形解决问题.
21. 如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.
(1)判断直线AF与⊙O的位置关系并说明理由;
(2)若⊙O的半径为6,AF=2,求AC的长;
(3)在(2)的条件下,求阴影部分的面积.
【答案】(1)直线AF与⊙O相切.理由见解析
(2)6 (3)18﹣6π.
【解析】
【分析】(1)连接OC,证明△AOF≌△COF(SAS),由全等三角形的判定与性质得出∠OAF=∠OCF=90°,由切线的判定可得出结论;
(2)由直角三角形的性质求出∠AOF=30°,可得出AE=OA=3,则可求出答案;
(3)证明△AOC是等边三角形,求出∠AOC=60°,OC=6,由三角形面积公式和扇形的面积公式可得出答案.
【小问1详解】
直线AF与⊙O相切.
理由如下:连接OC,
∵PC为圆O切线,
∴CP⊥OC,
∴∠OCP=90°,
∵OF∥BC,
∴∠AOF=∠B,∠COF=∠OCB,
∵OC=OB,
∴∠OCB=∠B,
∴∠AOF=∠COF,
∵在△AOF和△COF中,
,
∴△AOF≌△COF(SAS),
∴∠OAF=∠OCF=90°,
∴AF⊥OA,
又∵OA为圆O的半径,
∴AF为圆O的切线;
【小问2详解】
∵△AOF≌△COF,
∴∠AOF=∠COF,
∵OA=OC,
∴E为AC中点,
即,
∵∠,
∴,
∴∠AOF=30°,
∴,
∴;
【小问3详解】
∵AC=OA=6,OC=OA,
∴△AOC是等边三角形,
∴∠AOC=60°,OC=6,
∵∠OCP=90°,
∴,
∴S△OCP=,
∴阴影部分面积=S△OCP﹣S扇形AOC=.
【点睛】此题考查了切线的判定与性质,全等三角形的判定与性质,平行线的性质,等腰三角形的性质,解直角三角形,三角形的面积求法,等边三角形的判定与性质,扇形的面积公式,熟练掌握切线的判定与性质是解本题的关键.
四、填空题(本大题共4小题,每小题6分,共24分.)
22. 分解因式:a4﹣3a2﹣4=_____.
【答案】(a2+1)(a+2)(a﹣2)
【解析】
【分析】首先利用十字相乘法分解为 ,然后利用平方差公式进一步因式分解即可.
【详解】解:a4﹣3a2﹣4
=(a2+1)(a2﹣4)
=(a2+1)(a+2)(a﹣2),
故答案为:(a2+1)(a+2)(a﹣2).
【点睛】本题考查利用因式分解,解决问题的关键是掌握解题步骤:一提二套三检查.
23. 如图,在平面直角坐标系中,一次函数的图象经过点且与函数的图象交于点.若一次函数随的增大而增大,则的取值范围是____.
【答案】
【解析】
【分析】分别求出过点P,且平行于x轴和y轴时对应的m值,即可得到m的取值范围.
【详解】当PQ平行于x轴时,点Q的坐标为,代入中,可得;
当PQ平行于y轴时,点Q的坐标为,可得;
∵一次函数随的增大而增大,
∴的取值范围是,
故答案:.
【点睛】本题考查一次函数和反比例函数图象的交点问题,找到两个临界是解决本题的关键.
24. 已知x1、x2是关于x的方程x2﹣2x+k﹣1=0的两实数根,且=x12+2x2﹣1,则k的值为 _____.
【答案】2
【解析】
【分析】根据一元二次方程根与系数的关系以及解的定义得到x1+x2=2,x1•x2=k﹣1,x12﹣2x1+k﹣1=0,再根据=x12+2x2﹣1,推出=4﹣k,据此求解即可.
【详解】解:∵x1、x2是关于x的方程x2﹣2x+k﹣1=0的两实数根,
∴x1+x2=2,x1•x2=k﹣1,x12﹣2x1+k﹣1=0,
∴x12=2x1﹣k+1,
∵=x12+2x2﹣1,
∴=2(x1+x2)﹣k,
∴=4﹣k,
解得k=2或k=5,
当k=2时,关于x的方程为x2﹣2x+1=0,Δ≥0,符合题意;
当k=5时,关于x的方程为x2﹣2x+4=0,Δ<0,方程无实数解,不符合题意;
∴k=2,
故答案为:2.
【点睛】本题主要考查了一元二次方程根与系数的关系,一元二次方程解的定义,熟知一元二次方程根与系数的关系是解题的关键.
25. 如图,矩形ABCD中,AB=6,AD=4,点E、F分别是AB、DC上的动点,EF∥BC,则AF+CE的最小值是 _____.
【答案】10
【解析】
【分析】延长BC到G,使CG=EF,连接FG,证明四边形EFGC是平行四边形,得出CE=FG,得出当点A、F、G三点共线时,AF+CE的值最小,根据勾股定理求出AG即可.
【详解】解:延长BC到G,使CG=EF,连接FG,
∵,EF=CG,
∴四边形EFGC平行四边形,
∴CE=FG,
∴AF+CE=AF+FG,
∴当点A、F、G三点共线时,AF+CE的值最小为AG,
由勾股定理得,AG===10,
∴AF+CE的最小值为10,
故答案为:10.
【点睛】本题主要考查了勾股定理,平行四边形的判定和性质,根据题意作出辅助线,得出当A、F、G三点共线时,AF+CE的值最小,是解题的关键.
五、解答题(本大题共3小题,每小题12分,共36分.)
26. 为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践基地开展劳动实践活动.在此次活动中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:
甲型客车
乙型客车
载客量(人/辆)
35
30
租金(元/辆)
400
320
学校计划此次劳动实践活动的租金总费用不超过3000元.
(1)参加此次劳动实践活动的老师和学生各有多少人?
(2)每位老师负责一辆车的组织工作,请问有哪几种租车方案?
(3)学校租车总费用最少是多少元?
【答案】(1)参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人
(2)一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆
(3)学校租车总费用最少是2800元.
【解析】
【分析】(1)设参加此次劳动实践活动的老师有x人,根据参加实践活动的学生人数的两种不同表示方法作为等量关系列方程;
(2)首页判断车辆总数为8,设租甲型客车m辆,列出不等式组求出整数解即可;
(3)列出函数解析式w=80m+2560,结合自变量取值范围求出最少总费用.
【小问1详解】
设参加此次劳动实践活动的老师有x人,参加此次劳动实践活动的学生有(30x+7)人,
根据题意得:30x+7=31x﹣1,
解得x=8,
∴30x+7=30×8+7=247,
答:参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人;
【小问2详解】
师生总数为247+8=255(人),
∵每位老师负责一辆车的组织工作,
∴一共租8辆车,
设租甲型客车m辆,则租乙型客车(8﹣m)辆,
根据题意得:,
解得3≤m≤5.5,
∵m为整数,
∴m可取3、4、5,
∴一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;
【小问3详解】
设租甲型客车m辆,则租乙型客车(8﹣m)辆,
由(2)知:3≤m≤5.5,
设学校租车总费用是w元,
w=400m+320(8﹣m)=80m+2560,
∵80>0,
∴w随m的增大而增大,
∴m=3时,w取最小值,最小值为80×3+2560=2800(元),
答:学校租车总费用最少是2800元.
【点睛】本题考查一元一次方程的实际应用、利用一次函数解决最小利润问题,解决问题的关键是根据题意得到相等关系或不相等关系列出方程、不等式组以及函数解析式解决问题.
27. 如图,在矩形ABCD中,AB=6,BC=4,点M、N分别在AB、AD上,且MN⊥MC,点E为CD的中点,连接BE交MC于点F.
(1)当F为BE的中点时,求证:AM=CE;
(2)若=2,求的值;
(3)若MN∥BE,求值.
【答案】(1)见解析 (2)
(3)
【解析】
【分析】(1)根据矩形的性质,证明△BMF≌ △ECF,得BM=CE,再利用点E为CD的 中点,即可证明结论;
(2)利用△BMF∽△ECF,得,从而求出BM的长,再利用△ANM∽△BMC ,得 ,求出AN的长,可得答案;
(3)首先利用同角的余角相等得 ∠CBF= ∠CMB,则tan∠CBF=tan∠CMB,得 ,可得BM的长,由(2)同理可得答案.
【小问1详解】
证明:∵F为BE的中点,
∴BF=EF,
∵四边形ABCD是矩形,
∴AB∥CD,AB=CD
∴∠BMF=∠ECF,
∵∠BFM=∠EFC,
∴△BMF≌△ECF(AAS),
∴BM=CE,
∵点E为CD的中点,
∴CE=CD,
∵AB=CD,
∴,
∴,
∴AM=CE;
【小问2详解】
∵∠BMF=∠ECF,∠BFM=∠EFC,
∴△BMF∽△ECF,
∴,
∵CE=3,
∴BM=,
∴AM=,
∵CM⊥MN,
∴∠CMN=90°,
∴∠AMN+∠BMC=90°,
∵∠AMN+∠ANM=90°,
∴∠ANM=∠BMC,
∵∠A=∠MBC,
∴△ANM∽△BMC,
∴,
∴,
∴,
∴DN=AD﹣AN=4﹣=,
∴;
【小问3详解】
∵MN∥BE,
∴∠BFC=∠CMN,
∴∠FBC+∠BCM=90°,
∵∠BCM+∠BMC=90°,
∴∠CBF=∠CMB,
∴tan∠CBF=tan∠CMB,
∴,
∴,
∴,
∴,
由(2)同理得,,
∴,
解得:AN=,
∴DN=AD﹣AN=4﹣=,
∴.
【点睛】本题是相似形综合题,主要考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,三角函数等知识,求出BM的长是解决(2)和(3)的关键.
28. 如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).
(1)求这条抛物线所对应的函数的表达式;
(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;
(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为1:5两部分,求点P的坐标.
【答案】(1)
(2),点D的坐标为(﹣2,2);
(3)点P的坐标为(6,﹣10)或(﹣,﹣).
【解析】
【分析】(1)运用待定系数法即可解决问题;
(2)过点D作DH⊥AB于H,交直线AC于点G,过点D作DE⊥AC于E,可用待定系数法求出直线AC的解析式,设点D的横坐标为m,则点G的横坐标也为m,从而可以用m的代数式表示出DG,然后利用得到,可得出关于m的二次函数,运用二次函数的最值即可解决问题;
(3)根据S△PCB:S△PCA=即可求解.
【小问1详解】
∵抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).
∴,
解得:,
∴抛物线的解析式为;
【小问2详解】
(2)过点D作DH⊥AB于H,交直线AC于点G,过点D作DE⊥AC于E,如图.
设直线AC的解析式为y=kx+t,
则,
解得:,
∴直线AC的解析式为.
设点D的横坐标为m,则点G的横坐标也为m,
∴
∴,
∵DE⊥AC,DH⊥AB,
∴∠EDG+∠DGE=∠AGH+∠CAO=90°,
∵∠DGE=∠AGH,
∴∠EDG=∠CAO,
∴==,
∴,
∴,
∴当m=﹣2时,点D到直线AC的距离取得最大值.
此时,
即点D的坐标为(﹣2,2);
【小问3详解】
如图,设直线CP交x轴于点E,
直线CP把四边形CBPA的面积分为1:5两部分,
又∵S△PCB:S△PCA=,
则EB:AE=1:5或5:1
则AE=5或1,
即点E的坐标为(1,0)或(﹣3,0),
将点E的坐标代入直线CP的表达式:y=nx+2,
解得:n=﹣2或,
故直线CP的表达式为:y=﹣2x+2或y=x+2,
联立方程组或,
解得:x=6或﹣(不合题意值已舍去),
故点P的坐标为(6,﹣10)或(﹣,﹣).
【点睛】本题是二次函数综合题,考查了待定系数法求函数的解析式,二次函数的性质,锐角三角函数、图形面积计算等,解决问题的关键是将面积比转化为线段比.
初中数学中考复习 精品解析:2022年四川省自贡市中考数学真题(解析版): 这是一份初中数学中考复习 精品解析:2022年四川省自贡市中考数学真题(解析版),共24页。试卷主要包含了 下列运算正确是等内容,欢迎下载使用。
初中数学中考复习 精品解析:2022年四川省遂宁市中考数学真题(解析版): 这是一份初中数学中考复习 精品解析:2022年四川省遂宁市中考数学真题(解析版),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学中考复习 精品解析:2022年四川省绵阳市中考数学真题(解析版): 这是一份初中数学中考复习 精品解析:2022年四川省绵阳市中考数学真题(解析版),共36页。试卷主要包含了73715×108B,3715×107D等内容,欢迎下载使用。