|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022-2023学年江西省宜春市丰城市高三(上)期末数学试卷(解析版)
    立即下载
    加入资料篮
    2022-2023学年江西省宜春市丰城市高三(上)期末数学试卷(解析版)01
    2022-2023学年江西省宜春市丰城市高三(上)期末数学试卷(解析版)02
    2022-2023学年江西省宜春市丰城市高三(上)期末数学试卷(解析版)03
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年江西省宜春市丰城市高三(上)期末数学试卷(解析版)

    展开
    这是一份2022-2023学年江西省宜春市丰城市高三(上)期末数学试卷(解析版),共15页。试卷主要包含了0分等内容,欢迎下载使用。

    2022-2023学年江西省宜春市丰城市高三(上)期末

    数学试卷

    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上,写在试卷上无效。
    3.考试结束后,本试卷和答题卡一并交回。

    I卷(选择题)

    一、单选题(本大题共12小题,共60.0分。在每小题列出的选项中,选出符合题目的一项)

    1.  已知复数在复平面内对应的点为的共轭复数,则(    )

    A.  B.  C.  D.

    2.  在数列中,,则(    )

    A.  B.  C.  D.

    3.  已知空间中两条不重合的直线,则没有公共点(    )

    A. 充分不必要条件 B. 必要不充分条件
    C. 充要条件 D. 既不充分也不必要条件

    4.  若命题是假命题,则实数的范围是(    )

    A.  B.  C.  D.

    5.  如果平面向量,那么下列结论中不正确的是(    )

    A.  B.
    C. 的夹角为 D. 向量方向上的投影为

    6.  在正方体中,直线所成角的大小为(    )

    A.  B.  C.  D.

    7.  已知,则的大小关系是(    )

    A.  B.  C.  D.

    8.  两个工厂生产同一种产品,其产量分别为为便于调控生产,分别将的值记为并进行分析.则的大小关系为(    )

    A.  B.  C.  D.

    9.  已知函数的所有正极值点由小到大构成以为公差的等差数列,若将的图象上所有的点向左平移个单位得到的图象,则(    )

    A.  B.  C.  D.

    10.  已知函数是定义在上的偶函数,当时,,则不等式的解集为(    )

    A.  B.  C.  D.

    11.  若函数在区间内有最小值,则实数的取值范围为(    )

    A.  B.  C.  D.

    12.  若一个三棱锥的底面是斜边长为的等腰直角三角形,三条侧棱长均为,则该三棱锥的外接球的表面积为(    )

    A.  B.  C.  D.

    II卷(非选择题)

    二、填空题(本大题共4小题,共20.0分)

    13.  已知是虚数单位,则实数的值为______

    14.  设等比数列的前项和为,且,则______

    15.  已知一个圆锥的底面半径为,其体积为,则该圆锥的侧面积为          

    16.  中,角所对的边分别为,则 ______

    三、解答题(本大题共6小题,共70.0分。解答应写出文字说明,证明过程或演算步骤)

    17.  本小题
    已知向量满足
    的夹角为,求
    ,求的夹角.

    18.  本小题
    如图,在四棱锥中,平面,底面是正方形,交于点的中点.
    求证:平面
    求证:平面平面


    19.  本小题
    已知函数
    求函数的最小正周期和单调递增区间;
    求函数上值域.

    20.  本小题
    已知函数其中是实数,且
    的值及曲线在点处的切线方程;
    在区间上的最大值.

    21.  本小题

    已知数列满足

    证明:是等比数列,是等差数列;

    的通项公式.

     

    22.  本小题
    已知函数是定义域为的奇函数.
    求实数的值及函数的值域;
    若不等式成立,求的取值范围.

    答案和解析

     

    1.【答案】 

    【解析】解:复数在复平面内对应的点为的共轭复数,

    故选:
    根据已知条件,结合共轭复数的概念,以及复数代数形式的乘除法运算,即可求解.
    本题考查了共轭复数的概念,以及复数代数形式的乘除法运算,需要学生熟练掌握公式,属于基础题.
     

    2.【答案】 

    【解析】

    【分析】

    本题考查由数列递推关系求数列的项,属于基础题.
    由数列的递推式,分别求得

    【解答】

    解:在数列中,


    故选D

      

    3.【答案】 

    【解析】解:是空间中的两条直线,
    没有公共点,可得异面,
    反之,由,可得没有公共点.
    没有公共点的必要不充分条件.
    故选:
    由平行直线、异面直线的定义结合充分必要条件的判定得答案.
    本题考查空间中直线与直线位置关系的判定及应用,考查充分必要条件的判定,是基础题.
     

    4.【答案】 

    【解析】解:若命题是假命题,
    则它的否定命题是真命题,
    时,
    所以的取值范围是
    故选:
    根据命题与它的否定命题一真一假,写出它的否定命题,再求的取值范围.
    本题考查了命题与它的否定命题应用问题,是基础题.
     

    5.【答案】 

    【解析】解:因为,所以
    对于,因为,所以,故A正确;
    对于,因为,故,故B正确;
    对于,因为,所以的夹角为,故C正确;
    对于方向上的投影为:,故D错误.
    故选:
    直接利用向量的坐标运算,向量的模,向量的夹角运算,向量在另一个向量上的投影的应用判定的结论.
    本题考查的知识要点:向量的坐标运算,向量的模,向量的夹角运算,向量在另一个向量上的投影,主要考查学生的运算能力和数学思维能力,属于基础题.
     

    6.【答案】 

    【解析】解:根据正方体的性质可知
    所以是直线所成角,
    由于三角形是等边三角形,所以
    即直线所成角的大小为
    故选:
    根据异面直线所成角的定义,先找出两直线所成的角,进而可求.
    本题主要考查了异面直线所成角的求解,属于基础题.
     

    7.【答案】 

    【解析】解:因为上单调递减,

    所以
    因为上单调递增,

    所以
    因为
    所以
    所以
    故选:
    利用函数的单调性以及中介值,比较即可.
    本题主要考查了对数函数与指数函数的单调性在函数值大小比较中的应用,属于基础题.
     

    8.【答案】 

    【解析】解:由得:,解得:,即
    得:,解得:,即
    得:,解得:,即
    当且仅当时取等号

    故选:
    解方程可依次求得,结合基本不等式可得大小关系.
    本题主要考查根据实际问题选择合适的函数模型,属于中档题.
     

    9.【答案】 

    【解析】解:由题意知,的最小正周期
    所以,所以
    将其图象上所有的点向左平移个单位得到的图象,

    故选:
    易知的最小正周期,再由求得的值,然后根据函数图象左加右减的平移原则,得解.
    本题考查三角函数的图象与性质,熟练掌握正弦函数的周期性,理解函数图象左加右减的平移原则是解题的关键,考查逻辑推理能力和运算能力,属于基础题.
     

    10.【答案】 

    【解析】解:时,
    上单调递增;
    是定义在上的偶函数,
    上单调递减;

    得:,则,解得:
    的解集为
    故选:
    根据函数解析式和奇偶性可确定的单调性,结合可得自变量的大小关系,由此可解不等式求得结果.
    本题主要考查了函数的奇偶性及单调性在不等式求解中的应用,属于基础题.
     

    11.【答案】 

    【解析】解:由,若函在区间内有最小值.此时函数必定存在极值点,
    ,设为一元二次方程的两根,有
    故只需要即可,
    ,有,解得
    故选:
    依题意可知函数在区间必定存在极值点,对求导,可令,只需,解该不等式组即得答案.
    本题考查利用导数研究函数的最值,考查转化思想及运算求解能力,属于中档题.
     

    12.【答案】 

    【解析】解:一个三棱锥的底面是斜边长为的等腰直角三角形,三条侧棱长均为
    三棱锥设为,底面是以为斜边的等腰直角三角形,
    在面上的射影为中点平面
    为底面三角形的外心,设的外接球球心.,外接球的半径为:
    此三棱锥外接球的表面积为
    故选:
    在面上的射影为中点,则平面求出的外接球球心.求解外接球的半径,然后求解外接球的表面积.
    本题考查空间点、线、面位置关系,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.
     

    13.【答案】 

    【解析】解:


    解得
    故答案为:
    利用实数能比较大小,虚数不能比较大小,再结合对数的运算法则求解.
    本题考查复数定义的应用,对数的运算法则,属于中档题.
     

    14.【答案】 

    【解析】解:因为
    所以当时,
    所以,即
    所以等比数列的公比为
    时,
    所以,解得
    所以
    故答案为:
    由题知当时,,进而结合已知得公比为,再求得即可求解.
    本题主要考查了数列的和与项的递推关系的应用,还考查了等比数列的通项公式的应用,属于基础题.
     

    15.【答案】 

    【解析】

    【分析】

    本题考查了圆锥的侧面积公式和圆锥的体积公式,考查了方程思想,属于基础题.
    由题意,设圆锥的高为,根据圆锥的底面半径为,其体积为求出,再求得母线的长度,然后确定圆锥的侧面积即可.

    【解答】

    解:由圆锥的底面半径为,其体积为
    设圆锥的高为,则,解得
    所以圆锥的母线长
    所以圆锥的侧面积
    故答案为:

      

    16.【答案】 

    【解析】解:

    ,得
    由正弦定理,得

    由余弦定理

    故答案为:
    由二倍角公式求出,由正弦定理求得,从而可求出的值,再利用余弦定理即可求解.
    本题主要考查了正弦定理,余弦定理,二倍角公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
     

    17.【答案】解:
    的夹角为




    的夹角为



    的夹角为 

    【解析】由平面向量数量积运算,结合向量模的运算求解即可;
    由平面向量数量积运算,结合向量夹角的运算求解即可.
    本题考查了平面向量数量积运算,重点考查了向量夹角的运算,属基础题.
     

    18.【答案】证明:底面是正方形,交于点
    中点,
    的中点,

    平面平面
    平面
    底面是正方形,

    平面平面


    平面
    平面
    平面平面 

    【解析】本题考查了线面平行和面面垂直的证明,属于基础题.
    根据中位线得到,即可得证;
    根据题意得到平面,即可得证.
     

    19.【答案】解:
    所以最小正周期

    解得
    故函数的单调递增区间为




    即函数上值域为 

    【解析】利用诱导公式和辅助角公式可得,即可求出周期和单调增区间;
    ,可得,利用正弦函数的性质可得值域.
    本题考查正弦函数的周期性、单调性及部分区间上的值域,考查运算求解能力,属于中档题.
     

    20.【答案】解:

    ---------------
    ,点
     处的切线方程为:,即---------------
    得:---------------
     在区间上为递增函数---------------
    时, 在区间上的最大值-------------- 

    【解析】求出函数的导数,利用函数的极值点求解即可.求出切线的斜率,然后求解切线方程.
    利用函数的单调性求解函数的最值即可.
    本题考查函数的导数的应用,切线方程以及函数的最值的求法,考查计算能力.
     

    21.【答案】证明:




    是首项为,公比为的等比数列,


    所以

    是首项为,公差为的等差数列;
    解:
    可得:

    联立方程并求解可得:

     

    【解析】本题主要考查等差、等比数列的判定与证明以及其定义和通项公式,考查学生的计算能力和推理能力,属于中档题.
    利用定义法分别先构造再证明即可;
    结合等差、等比的通项公式,然后连立方程组求解可得.
     

    22.【答案】解:因为是定义域为的奇函数,
    所以,即
    解得,故

    所以,解得,所以
    经检验时,是奇函数,

    因为,所以
    故函数的值域为

    则函数上为减函数,
    又因为为奇函数,
    所以不等式等价于
    ,即
    上是减函数,所以
    解得
    的取值范围为 

    【解析】由奇函数的定义可得所以,解得,进而得,因为,所以,推出函数的值域.
    为奇函数,推出不等式等价于,再由上是减函数,所以,进而解得的取值范围.
    本题考查函数的性质,解题中注意转化思想的应用,属于中档题.
     

    相关试卷

    2022-2023学年江西省宜春市丰城九中高一(上)期末数学试卷(含解析): 这是一份2022-2023学年江西省宜春市丰城九中高一(上)期末数学试卷(含解析),共13页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年江西省宜春市丰城市拖船中学高一(下)期末数学试卷(含解析): 这是一份2022-2023学年江西省宜春市丰城市拖船中学高一(下)期末数学试卷(含解析),共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年江西省宜春市丰城市高三(上)期末数学试卷(含答案解析): 这是一份2022-2023学年江西省宜春市丰城市高三(上)期末数学试卷(含答案解析),共12页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map