终身会员
搜索
    上传资料 赚现金

    初中数学中考复习 第19课时 矩形、菱形、正方形课件PPT

    立即下载
    加入资料篮
    初中数学中考复习 第19课时 矩形、菱形、正方形课件PPT第1页
    初中数学中考复习 第19课时 矩形、菱形、正方形课件PPT第2页
    初中数学中考复习 第19课时 矩形、菱形、正方形课件PPT第3页
    初中数学中考复习 第19课时 矩形、菱形、正方形课件PPT第4页
    初中数学中考复习 第19课时 矩形、菱形、正方形课件PPT第5页
    初中数学中考复习 第19课时 矩形、菱形、正方形课件PPT第6页
    初中数学中考复习 第19课时 矩形、菱形、正方形课件PPT第7页
    初中数学中考复习 第19课时 矩形、菱形、正方形课件PPT第8页
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 第19课时 矩形、菱形、正方形课件PPT

    展开

    这是一份初中数学中考复习 第19课时 矩形、菱形、正方形课件PPT,共18页。PPT课件主要包含了考点梳理,自主测试,命题点1,命题点2,命题点3等内容,欢迎下载使用。
    考点一 矩形的性质与判定1.定义有一个角是直角的平行四边形是矩形.2.性质(1)矩形的对边平行且相等;(2)矩形的四个角都是直角;(3)矩形的对角线相等;(4)矩形既是轴对称图形,又是中心对称图形,它有两条对称轴,它的对称中心是对角线的交点.3.判定(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线相等的平行四边形是矩形.
    考点二 菱形的性质与判定1.定义一组邻边相等的平行四边形叫做菱形.2.性质(1)菱形的对边平行,四边都相等;(2)菱形的对角相等;(3)菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角.3.判定(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四条边都相等的四边形是菱形.4.菱形的面积菱形的面积等于两条对角线乘积的一半,即S菱形= ab.(其中a,b为菱形对角线长)
    考点三 正方形的性质与判定1.定义一组邻边相等的矩形叫做正方形.2.性质(1)正方形的四条边都相等,四个角都是直角;(2)正方形的对角线相等,且互相垂直平分,每条对角线平分一组对角;(3)正方形是轴对称图形,两条对角线所在直线以及过每一组对边中点的直线都是它的对称轴;正方形是中心对称图形,对角线的交点是它的对称中心.
    3.判定(1)一组邻边相等并且有一个角是直角的平行四边形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线互相垂直的矩形是正方形;(4)有一个角是直角的菱形是正方形;(5)对角线相等的菱形是正方形.4.正方形的面积公式:S=a2(a为边长)或S= l2.(l为对角线的长)
    1.已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,下列结论不正确的是(  )A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当∠ABD=∠CBD时,四边形ABCD是矩形答案:D
    2.(2019四川成都武侯一模)如图,在菱形ABCD中,∠A=130°,连接BD,∠DBC等于(  )A.25°B.35°C.50°D.65°答案:A
    3.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为(  )A.14D.17答案:C
    4.如图,在正方形ABCD中,AD=1.将△ABD绕点B顺时针旋转45°得到△A'BD',此时A'D'与CD交于点E,则DE的长度为     . 
    命题点1 矩形的性质与判定【例1】 如图,在△ABC中,AB=AC,AD,AE分别是∠BAC和∠BAC外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.分析:第(1)题利用邻补角的角平分线互相垂直易证;在第(2)题中,AB与DE是四边形ADBE的对角线,可考虑利用矩形的判定,证明四边形ADBE是矩形即可.
    (1)证明:∵AD,AE分别平分∠BAC,∠BAF,
    (2)解:AB=DE.理由:∵AB=AC,AD平分∠BAC,∴AD⊥BC.∴∠ADB=90°.∵BE⊥AE,∴∠AEB=90°.∵∠DAE=90°,∴四边形ADBE是矩形.∴AB=DE.
    命题点2 菱形的性质与判定【例2】 如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan ∠ADP的值.(1)证明:∵BF平分∠ABC,∴∠ABF=∠EBF.∵AD∥BC,∴∠AFB=∠EBF.∴∠AFB=∠ABF.∴AB=AF.同理,AB=BE.∴AF=BE.又AF∥BE,∴四边形ABEF是平行四边形.∵AB=AF,∴四边形ABEF是菱形.
    (2)解:过点P作PG⊥AD于点G,如图.∵四边形ABEF是菱形,∠ABC=60°,∴△ABE是等边三角形.
    变式训练如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=5, AC=6.过D点作DE∥AC交BC的延长线于点E.(1)求△BDE的周长;(2)点P为线段BC上的点,连接PO,并延长交AD于点Q,求证:BP=DQ.
    (1)解:因为四边形ABCD为菱形,所以BE∥AD.又AC∥DE,所以四边形ACED为平行四边形,则有AB=AD=BC=CE=5,所以BE=BC+CE=10,AC=DE=6.
    (2)证明:因为四边形ABCD为菱形,所以OB=OD,BE∥AD,则∠DBC=∠ADB.又∠BOP=∠DOQ,所以△BOP≌△DOQ,故有BP=DQ.
    命题点3 正方形的性质与判定【例3】 如图①,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图②,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论; (2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图③的方式拼接成一个四边形.若正方形ABCD的边长为3 cm, HA=EB=FC=GD=1 cm,则图③中阴影部分的面积为    cm2.
    分析:根据题目的条件,可先证△AEH,△BFE,△CGF,△DHG四个三角形全等,证得四边形EFGH的四边相等,然后由全等再证一个角是直角.解:(1)四边形EFGH是正方形.证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA.∵HA=EB=FC=GD,∴AE=BF=CG=DH.∴△AEH≌△BFE≌△CGF≌△DHG.∴EF=FG=GH=HE.∴四边形EFGH是菱形.由△DHG≌△AEH,知∠DHG=∠AEH.∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°.∴∠GHE=90°.∴菱形EFGH是正方形.(2)1

    相关课件

    中考数学一轮复习考点练习课件第19课时 矩形、菱形、正方形 (含解析):

    这是一份中考数学一轮复习考点练习课件第19课时 矩形、菱形、正方形 (含解析),共18页。PPT课件主要包含了考点梳理,自主测试,命题点1,命题点2,命题点3等内容,欢迎下载使用。

    初中数学中考复习 课时33 矩形、菱形、正方形课件PPT:

    这是一份初中数学中考复习 课时33 矩形、菱形、正方形课件PPT,共50页。PPT课件主要包含了三个内角,垂直且互相平分,一组对角,互相垂直,相等且互相垂直,互相垂直平分等内容,欢迎下载使用。

    初中数学中考复习 第2部分 第7单元 第24课时 矩形、菱形、正方形课件PPT:

    这是一份初中数学中考复习 第2部分 第7单元 第24课时 矩形、菱形、正方形课件PPT

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map