终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2023届湖南省长沙市高三上学期新高考1月适应性考试数学试卷(word版)

    立即下载
    加入资料篮
    2023届湖南省长沙市高三上学期新高考1月适应性考试数学试卷(word版)第1页
    2023届湖南省长沙市高三上学期新高考1月适应性考试数学试卷(word版)第2页
    2023届湖南省长沙市高三上学期新高考1月适应性考试数学试卷(word版)第3页
    还剩17页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届湖南省长沙市高三上学期新高考1月适应性考试数学试卷(word版)

    展开

    这是一份2023届湖南省长沙市高三上学期新高考1月适应性考试数学试卷(word版)
    长沙市2023年新高考适应性考试数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数z满足,则( )A. B. C. 2 D. 2. 设集合,,则的元素个数是( )A. 1 B. 2C. 3 D. 43 已知,,,则( )A. B. C. D. 4. 的展开式中,常数项为( )A. B. C. D. 5. 在平行六面体中,已知,,,,,则的值为( )A. 10.5 B. 12.5C. 22.5 D. 42.56. 若,则的值为( )A. B. C. D. 7. 裴波那契数列,因数学家莱昂纳多·裴波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列满足,且.卢卡斯数列是以数学家爱德华·卢卡斯命名,与裴波那契数列联系紧密,即,且,则( )A. B. C. D. 8. 在平面直角坐标系中,已知,,若该平面中存在点,同时满足两个条件与,则的取值范围是( )A. B. C. D. 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知双曲线的方程为,则( )A. 渐近线方程为 B. 焦距为C. 离心率为 D. 焦点到渐近线的距离为810. 自然环境中,大气压受到各种因素的影响,如温度、湿度、风速和海拔等方面的改变,都将导致大气压发生相应的变化,其中以海拔的影响最为显著.下图是根据一组观测数据得到海拔6千米~15千米的大气压强散点图,根据一元线性回归模型得到经验回归方程为,决定系数为;根据非线性回归模型得到经验回归方程为,决定系数为 ,则下列说法正确的是( )A. 由散点图可知,大气压强与海拔高度负相关B 由方程可知,海拔每升高1千米,大气压强必定降低4.0kPaC. 由方程可知,样本点的残差为D. 对比两个回归模型,结合实际情况,方程的预报效果更好11. 已知函数与相交于A,B两点,与相交于C,D两点,若A,B,C,D四点的横坐标分别为,,,,且,,则( )A. B. C. D. 12. 如图,已知是边长为4的等边三角形,D,E分别是AB,AC的中点,将沿着DE翻折,使点A到点P处,得到四棱锥,则( )A. 翻折过程中,该四棱锥的体积有最大值为3B. 存在某个点位置,满足平面平面C. 当时,直线与平面所成角的正弦值为D. 当时,该四棱锥的五个顶点所在球的表面积为三、填空题:本题共4小题,每小题5分,共20分.13. 已知,,,若,则________.14. 已知函数,若函数的图象关于点中心对称,且关于直线轴对称,则的最小值为______.15. 已知O为坐标原点,F为抛物线的焦点,过点F作倾斜角为60°的直线与抛物线交于A,B两点(其中点A在第一象限).若直线AO与抛物线的准线l交于点D,设,的面积分别为,,则______.16. 已知函数,若关于x的方程恰有两个不相等的实数根,且,则的取值范围是______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知数列为等差数列,数列为等比数列,满足,,.(1)求数列,的通项公式;(2)求数列前n项和.18. 在锐角中,角A,B,C所对应的边分别为a,b,c,已知.(1)求角B的值;(2)若,求的周长的取值范围.19. 如图,在以A,B,C,D,E,F为顶点六面体中(其中平面EDC),四边形ABCD是正方形,平面ABCD,,且平面平面 .(1)设 为棱 中点,证明:四点共面;(2)若,求平面与平面的夹角的余弦值.20. 为了调动大家积极学习党的二十大精神,某市举办了党史知识的竞赛.初赛采用“两轮制”方式进行,要求每个单位派出两个小组,且每个小组都要参加两轮比赛,两轮比赛都通过的小组才具备参与决赛的资格.某单位派出甲、乙两个小组参赛,在初赛中,若甲小组通过第一轮与第二轮比赛的概率分别是,,乙小组通过第一轮与第二轮比赛的概率分别是,,且各个小组所有轮次比赛的结果互不影响.(1)若该单位获得决赛资格的小组个数为X,求X的数学期望;(2)已知甲、乙两个小组都获得了决赛资格,决赛以抢答题形式进行.假设这两组在决赛中对每个问题回答正确的概率恰好是各自获得决赛资格的概率.若最后一道题被该单位的某小组抢到,且甲、乙两个小组抢到该题的可能性分别是45%,55%,该题如果被答对,计算恰好是甲小组答对的概率.21. 设A,B是椭圆上异于的两点,且直线AB经过坐标原点,直线PA,PB分别交直线于C,D两点.(1)求证:直线PA,AB,PB的斜率成等差数列;(2)求面积的最小值.22. 已知函数,其中.(1)求的最大值;(2)若不等式对于任意的恒成立,求实数a的取值范围.长沙市2023年新高考适应性考试数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数z满足,则( )A. B. C. 2 D. 【答案】B2. 设集合,,则的元素个数是( )A. 1 B. 2C. 3 D. 4【答案】C3. 已知,,,则( )A. B. C. D. 【答案】C4. 的展开式中,常数项为( )A. B. C. D. 【答案】D5. 在平行六面体中,已知,,,,,则的值为( )A. 10.5 B. 12.5C. 22.5 D. 42.5【答案】A6. 若,则的值为( )A. B. C. D. 【答案】A7. 裴波那契数列,因数学家莱昂纳多·裴波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列满足,且.卢卡斯数列是以数学家爱德华·卢卡斯命名,与裴波那契数列联系紧密,即,且,则( )A. B. C. D. 【答案】C8. 在平面直角坐标系中,已知,,若该平面中存在点,同时满足两个条件与,则的取值范围是( )A. B. C. D. 【答案】C二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知双曲线的方程为,则( )A. 渐近线方程为 B. 焦距为C. 离心率为 D. 焦点到渐近线的距离为8【答案】BC10. 自然环境中,大气压受到各种因素的影响,如温度、湿度、风速和海拔等方面的改变,都将导致大气压发生相应的变化,其中以海拔的影响最为显著.下图是根据一组观测数据得到海拔6千米~15千米的大气压强散点图,根据一元线性回归模型得到经验回归方程为,决定系数为;根据非线性回归模型得到经验回归方程为,决定系数为 ,则下列说法正确的是( )A. 由散点图可知,大气压强与海拔高度负相关B. 由方程可知,海拔每升高1千米,大气压强必定降低4.0kPaC. 由方程可知,样本点的残差为D. 对比两个回归模型,结合实际情况,方程的预报效果更好【答案】ACD11. 已知函数与相交于A,B两点,与相交于C,D两点,若A,B,C,D四点的横坐标分别为,,,,且,,则( )A. B. C. D. 【答案】ABD12. 如图,已知是边长为4的等边三角形,D,E分别是AB,AC的中点,将沿着DE翻折,使点A到点P处,得到四棱锥,则( )A. 翻折过程中,该四棱锥的体积有最大值为3B. 存某个点位置,满足平面平面C. 当时,直线与平面所成角的正弦值为D. 当时,该四棱锥的五个顶点所在球的表面积为【答案】ACD三、填空题:本题共4小题,每小题5分,共20分.13. 已知,,,若,则________.【答案】14. 已知函数,若函数的图象关于点中心对称,且关于直线轴对称,则的最小值为______.【答案】315. 已知O为坐标原点,F为抛物线的焦点,过点F作倾斜角为60°的直线与抛物线交于A,B两点(其中点A在第一象限).若直线AO与抛物线的准线l交于点D,设,的面积分别为,,则______.【答案】##0.562516. 已知函数,若关于x的方程恰有两个不相等的实数根,且,则的取值范围是______.【答案】四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知数列为等差数列,数列为等比数列,满足,,.(1)求数列,的通项公式;(2)求数列的前n项和.【答案】(1),; (2).【解析】【分析】(1)由等差数列和等比数列的基本量法求得公差和公比后可得通项公式;(2)用错位相减法求数列的和.小问1详解】解:设的公差为,的公比为,,,联立,整理可得,解得,所以,.【小问2详解】解:由(1)知,则,①,②①-②,得.所以.18. 在锐角中,角A,B,C所对应的边分别为a,b,c,已知.(1)求角B的值;(2)若,求的周长的取值范围.【答案】(1) (2)【解析】【分析】(1)根据正弦定理得到,再利用余弦定理求出;(2)根据正弦定理得到,从而得到,求出,得到,,从而求出周长的取值范围.【小问1详解】,由正弦定理得:,即,由余弦定理得:,因为,所以;【小问2详解】锐角中,,,由正弦定理得:,故,则,因为锐角中,,则,,解得:,故,,则,故,所以三角形周长的取值范围是.【点睛】解三角形中最值或范围问题,通常涉及与边长,周长有关的范围问题,与面积有关的范围问题,或与角度有关的范围问题,常用处理思路:①余弦定理结合基本不等式构造不等关系求出答案;②采用正弦定理边化角,利用三角函数的范围求出最值或范围,如果三角形为锐角三角形,或其他的限制,通常采用这种方法;③巧妙利用三角换元,实现边化角,进而转化为正弦或余弦函数求出最值19. 如图,在以A,B,C,D,E,F为顶点的六面体中(其中平面EDC),四边形ABCD是正方形,平面ABCD,,且平面平面 .(1)设 为棱 的中点,证明:四点共面;(2)若,求平面与平面的夹角的余弦值.【答案】(1)见解析 (2)【解析】【分析】(1)根据线面垂直以及面面垂直的性质证明平面,平面,进而证明,即可求解,(2)建立空间直角坐标系,根据平面法向量以及向量的夹角即可求解平面夹角.【小问1详解】连接,由于四边形ABCD是正方形,所以,又平面,平面,所以 ,平面,所以平面, 由于为棱中点,,所以 ,又平面平面,平面平面,平面,所以平面 ,因此,所以四点共面,【小问2详解】由于两两垂直,故建立如图所示的空间直角坐标系,,,设,由(1)知,故,解得,故,,设平面,的法向量分别为则 即,取,则 , 即,取,则 ,设平面与平面的夹角为,则20. 为了调动大家积极学习党的二十大精神,某市举办了党史知识的竞赛.初赛采用“两轮制”方式进行,要求每个单位派出两个小组,且每个小组都要参加两轮比赛,两轮比赛都通过的小组才具备参与决赛的资格.某单位派出甲、乙两个小组参赛,在初赛中,若甲小组通过第一轮与第二轮比赛的概率分别是,,乙小组通过第一轮与第二轮比赛的概率分别是,,且各个小组所有轮次比赛的结果互不影响.(1)若该单位获得决赛资格的小组个数为X,求X的数学期望;(2)已知甲、乙两个小组都获得了决赛资格,决赛以抢答题形式进行.假设这两组在决赛中对每个问题回答正确的概率恰好是各自获得决赛资格的概率.若最后一道题被该单位的某小组抢到,且甲、乙两个小组抢到该题的可能性分别是45%,55%,该题如果被答对,计算恰好是甲小组答对的概率.【答案】(1)见解析 (2)【解析】【分析】(1)先算出甲乙通过两轮制的初赛的概率,的取值有分三种情况解决.(2)先算出一个题被答对的概率,然后再算出被甲答对的概率,然后再根据条件概率求解.【小问1详解】设甲乙通过两轮制的初赛分别为事件则由题意可得,的取值有则的分布列为:所以【小问2详解】设甲乙两组对每个问题回答正确的概率分别为,两组在决赛中对每个问题回答正确的概率恰好是各自获得决赛资格的概率,则一个题被甲小组抢到为事件,则,设一个题答对为事件,则该题如果被答对,恰好是甲小组答对即为21. 设A,B是椭圆上异于的两点,且直线AB经过坐标原点,直线PA,PB分别交直线于C,D两点.(1)求证:直线PA,AB,PB的斜率成等差数列;(2)求面积的最小值.【答案】(1)证明过程见解析 (2)【解析】【分析】(1)设,,表达出直线,直线,直线的斜率,由证明出结论;(2)写出直线PA的方程,与联立求出,同理求出,求出,利用三角换元,求出的最小值,结合到直线的距离,求出面积的最小值.【小问1详解】设,则,,直线的斜率,直线的斜率为,直线的斜率为,,故直线PA,AB,PB的斜率成等差数列;小问2详解】直线PA的方程为,与联立得:,同理可得:直线PB的方程为,与联立得:,故,因为,设,故,其中,故当时,取得最小值,最小值为,又点到直线的距离,故面积的最小值为.【点睛】圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.22. 已知函数,其中.(1)求的最大值;(2)若不等式对于任意的恒成立,求实数a的取值范围.【答案】(1)1 (2)【解析】【分析】(1)求导,得到函数单调性,极值最值情况,求出最大值;(2)先考虑时满足题意,再分与两种情况,求导后变形,与题干中建立联系,分类讨论求出实数a的取值范围.【小问1详解】,,令,解得:或,令,解得:,故在,上单调递增,在上单调递减,故在处取得极大值,,令,即当时,恒成立,故在处取得最大值,;【小问2详解】设,其中,①当时,,符合题意,②当时,,且,由(1)知:在单调递增,故,若,,则单调递减,有,符合题意,若,,符合题意,若,即时,,则在上单调递减,有,符合题意,若,即时,存在使得,当时,,故,则单调递增,可得,不合题意,因此当时,满足题意得,③当时,,且,由②可知:只需考虑,若,即时,由(1)知在上单调递减,故,存在,使得,当时,,得,则单调递减,可得:,不合题意,若,即时,由(1)可知:当时,,,故,则在上单调递增,有,符合题意,若,,符合题意,若,下面证明符合题意,当时,,故,当时,设,则,可得在上单调递增,在上单调递减,故,从而,符合题意,综上:.【点睛】数学问题的转化要注意等价性,也就是充分性与必要性兼备,有时在探求参数的取值范围时,为了寻找解题突破口,从满足题意得自变量范围内选择一个数,代入求得参数的取值范围,从而得到使得问题成立的一个必要条件,这个范围可能恰好就是所求范围,也可能比所求的范围大,需要验证其充分性,这就是所谓的必要性探路和充分性证明,对于特殊值的选取策略一般是某个常数,实际上时切线的横坐标,端点值或极值点等.

    相关试卷

    湖南省长沙市2024届高三上学期新高考适应性考试数学试卷:

    这是一份湖南省长沙市2024届高三上学期新高考适应性考试数学试卷,共14页。试卷主要包含了请保持答题卡的整洁,若,则,下列函数中,是奇函数的是等内容,欢迎下载使用。

    46,湖南省长沙市2024届高三上学期新高考适应性考试数学试卷:

    这是一份46,湖南省长沙市2024届高三上学期新高考适应性考试数学试卷,共20页。试卷主要包含了请保持答题卡的整洁, 若,则, 下列函数中,是奇函数的是等内容,欢迎下载使用。

    湖南省长沙市2024届高三上学期新高考适应性考试数学试卷:

    这是一份湖南省长沙市2024届高三上学期新高考适应性考试数学试卷,共14页。试卷主要包含了请保持答题卡的整洁,若,则,下列函数中,是奇函数的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map