![专题10:旋转型相似三角形-(老师版)第1页](http://m.enxinlong.com/img-preview/2/3/13877767/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题10:旋转型相似三角形-(老师版)第2页](http://m.enxinlong.com/img-preview/2/3/13877767/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题10:旋转型相似三角形-(老师版)第3页](http://m.enxinlong.com/img-preview/2/3/13877767/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题10:旋转型相似三角形-(学生版)第1页](http://m.enxinlong.com/img-preview/2/3/13877767/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题10:旋转型相似三角形-(学生版)第2页](http://m.enxinlong.com/img-preview/2/3/13877767/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2023年中考二轮集训20讲专题过关练习测试卷
2023年中考集训20讲专题10:旋转型相似三角形
展开
这是一份2023年中考集训20讲专题10:旋转型相似三角形,文件包含专题10旋转型相似三角形-老师版docx、专题10旋转型相似三角形-学生版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
专题10:旋转型相似三角形-2022年中考数学解题方法终极训练一、单选题1.在Rt△ABC中,∠BAC=90°,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在C′的位置,C′D交AB于点Q,则的值为( )A. B. C. D.【答案】A【解析】根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度数,求出其他角的度数,可得AQ=AC,将转化为,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A作AE⊥BC,垂足为E,∵∠ADC=45°,∴△ADE是等腰直角三角形,即AE=DE=AD,在Rt△ABC中,∵∠BAC=90°,AD是△ABC的中线,∴AD=CD=BD,由折叠得:AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,∴∠CDC′=45°+45°=90°,∴∠DAC=∠DCA=(180°﹣45°)÷2=67.5°=∠C′AD,∴∠B=90°﹣∠C=∠CAE=22.5°,∠BQD=90°﹣∠B=∠C′QA=67.5°,∴AC′=AQ=AC,由△AEC∽△BDQ得:=,∴====.故选:A.【点评】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.2.如图,正方形中,点是边上一点,连接,以为对角线作正方形,边与正方形的对角线相交于点,连接.以下四个结论:①;②;③;④.其中正确的个数为( )A.个 B.个 C.个 D.个【答案】D【解析】①四边形AEFG和四边形ABCD均为正方形,∠EAB、∠GAD与∠BAG的和均为90°,即可证明∠EAB与∠GAD相等;②由题意易得AD=DC,AG=FG,进而可得,∠DAG=∠CAF,然后问题可证;③由四边形AEFG和四边形ABCD均为正方形,可求证△HAF∽△FAC,则有,然后根据等量关系可求解;④由②及题意知∠ADG=∠ACF=45°,则问题可求证.【详解】解:①∵四边形AEFG和四边形ABCD均为正方形∴∠EAG=∠BAD=90°又∵∠EAB=90°-∠BAG,∠GAD=90°-∠BAG∴∠EAB=∠GAD∴①正确②∵四边形AEFG和四边形ABCD均为正方形∴AD=DC,AG=FG∴AC=AD,AF=AG∴,即又∵∠DAG+∠GAC=∠FAC+∠GAC∴∠DAG=∠CAF∴∴②正确③∵四边形AEFG和四边形ABCD均为正方形,AF、AC为对角线∴∠AFH=∠ACF=45°又∵∠FAH=∠CAF∴△HAF∽△FAC∴即又∵AF=AE∴∴③正确④由②知又∵四边形ABCD为正方形, AC为对角线∴∠ADG=∠ACF=45°∴DG在正方形另外一条对角线上∴DG⊥AC∴④正确故选:D.【点评】本题主要考查相似三角形的判定与性质综合运用,同时利用到正方形相关性质,解题关键在于找到需要的相似三角形进而证明.二、填空题3.已知正方形DEFG的顶点F在正方形ABCD的一边AD的延长线上,连结AG,CE交于点H,若,,则CH的长为________.【答案】【解析】连接EG,与DF交于N,设CD和AH交于M,证明△ANG∽ADM,得到,从而求出DM的长,再通过勾股定理算出AM的长,通过证明△ADG≌△CDE得到∠DAG=∠DCE,从而说明△ADM∽△CHM,得到,最后算出CH的长.【详解】解:连接EG,与DF交于N,设CD和AH交于M,∴∠GNA=90°,DN=FN=EN=GN,∵∠MAD=∠GAN,∠MDA=∠GNA=90°,∴△ANG∽ADM,∴,∵,∴DF=EG=2,∴DN=NG=1,∵AD=AB=3,∴,解得:DM=,∴MC=,AM=,∵∠ADM+∠MDG=∠EDG+∠CDG,∴∠ADG=∠EDC,在△ADG和△CDE中,,∴△ADG≌△CDE(SAS),∴∠DAG=∠DCE,∵∠AMD=∠CMH,∴∠ADM=∠CHM=90°,∴△ADM∽△CHM,∴,即,解得:CH=.【点评】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,正方形的性质,勾股定理,综合性较强,解题的关键是找到合适的全等三角形和相似三角形,通过其性质计算出CH的长.4.如图,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),则BD的长为____.(用含k的式子表示)【答案】【解析】连接AC,将△ABD绕点A逆时针旋转至△ACG,连接DG,根据相似三角形的判定与性质求出DG=kBC,然后根据题意推出∠CDG=90°,即可利用勾股定理求解.【详解】解:如图,连接AC,∵AE⊥BC,BE=CE=2,∴BC=4,AE垂直平分BC,AB=AC,将△ABD绕点A逆时针旋转至△ACG,如图所示,连接DG,则AD=AG,BD=CG,由旋转的性质可得:∠BAC=∠DAG,∵AB=AC,AD=AG,∴△ABC∽△ADG,∴,∵AD=kAB,∴DG=kBC=4k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ABC+∠ADC=90°,∵△ABC∽△ADG,∴∠ABC=∠ADG,∴∠ADG+∠ADC=90°,即:∠CDG=90°,∴,∴.【点评】本题考查相似三角形的判定与性质,旋转构造辅助线,以及勾股定理解三角形等,掌握相似三角形的判定与性质是解题关键.5.如图,正方形的边长为8,线段绕着点逆时针方向旋转,且,连接,以为边作正方形,为边的中点,当线段的长最小时,______.【答案】【解析】连接BD,BF,FD,证明△EBC∽△FBD,根据题意,知道M,F,D三点一线时,FM最小,然后过点M作MG⊥BD,垂足为G,根据等腰直角三角形的性质、勾股定理分别求出MG和DG的长,再根据正切的定义计算即可.【详解】解:连接BD,BF,FD,如图,∵,∴,∵∠FBD+∠DBE=45°,∠EBC+∠DBE=45°,∴∠FBD=∠EBC,∴△EBC∽△FBD,∴∠FDB=∠ECB,,∴DF=,由题意知:FM、DF、DM三条线段满足FM+DF≥MD,其中DM、DF的值一定,∴当M,F,D三点一线时,FM最小,过点M作MN⊥BD,垂足为G,∵∠MBN=45°,BM=AB=4,∴MN=BN=2,∵MD==4,∴DG==6,∴=,故答案为:.【点评】本题考查了正方形的性质,手拉手相似模型,锐角三角函数,勾股定理,三角形面积,线段最值模型,熟练构造相似模型,准确确定线段最小值的条件是解题的关键.6.已知正方形的边长为12,、分别在边、上,将沿折叠,使得点落在正方形内部(不含边界)的点处,的延长线交于点.若点在正方形的对称轴上,且满足,则折痕的长为______________.【答案】或【解析】根据得到点是的中点,再分两种情况讨论,①如答案图l,当点在对角线上时,过点作于点,过点作交的延长线于点,则四边形为矩形;利用相似三角形的性质即可求出EF;②答案如图2.当点在的中垂线上时,为的中点,过点作于点,过点作交的延长线于点,得到,,同①即可求出EF.【详解】解:∵,∴点是的中点,又∵点在正方形的对称轴上,∴分以下两种情况讨论:①如答案图l,当点在对角线上时,过点作于点,过点作交的延长线于点,则四边形为矩形,∵在正方形中,,∴,∵,∴,∴,∵,∴,,由折叠可知,∴,∴,设,,则,∴,∵,∴,解得,∴,∴;②如答案图2.当点在的中垂线上时,为的中点,过点作于点,过点作交的延长线于点,则,,∴,同理①可得,综上所述,折痕的长为或.【点评】本题考查正方形的性质,轴对称变换,相似三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考填空题中的压轴题.7.如图,已知四边形ABCD与四边形CFGE都是矩形,点E在CD上,点H为AG的中点,,,,,则DH的长为______ .【答案】【解析】延长GE交AB于点M,作于首先求出AG、AH,由ADN∽,得,求出DN、AN,HN,在中利用勾股定理即可解决问题.【详解】延长GE交AB于点M,作于N.四边形ABCD与四边形CFGE都是矩形,四边形BFGM是矩形,,,,,点H为AG的中点,,,,,∽,,,,,,在中,.故答案为.【点评】本题考查矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF=S△ABF,其中正确的结论有_____个.【答案】4【解析】①四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正确;②由AE=AD=BC,又AD∥BC,所以==,故②正确;③过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故③正确;④根据△AEF∽△CBF得到,求出S△AEF=S△ABF,S△ABF=S矩形ABCDS四边形CDEF=S△ACD﹣S△AEF=S矩形ABCD﹣S矩形ABCD=S矩形ABCD,即可得到S四边形CDEF=S△ABF,故④正确.【详解】解:过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴==,∵AE=AD=BC,∴=,∴CF=2AF,故②正确,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,故③正确;∵△AEF∽△CBF,∴,∴S△AEF=S△ABF,S△ABF=S矩形ABCD∴S△AEF=S矩形ABCD,又∵S四边形CDEF=S△ACD﹣S△AEF=S矩形ABCD﹣S矩形ABCD=S矩形ABCD,∴S四边形CDEF=S△ABF,故④正确;故答案为:4.【点评】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线,根据相似三角形表示出图形面积之间关系是解题的关键.三、解答题9.如图,在中,.动点P从点A出发,以每秒3个单位长度的速度沿方向绕行一周,动直线从开始,以每秒1个单位长度的速度向右平移,分别交于两点.当点P运动到点A时,直线也停止运动.(1)求点P到的最大距离;(2)当点P在上运动时,①求的值;②把绕点E顺时针方向旋转,当点P的对应点落在上时,的对应线段恰好与垂直,求此时t的值.(3)当点P关于直线的对称点为F时,四边形能否成为菱形?若能,直接写出t的值;若不能,请说明理由.【答案】(1);(2)①;②;(3)能,【解析】(1)当点P与点C重合时,点P到AB的距离最大,过点C作CF⊥AB于F,根据面积法求解即可;(2)①分别求出DG和PG的长,求出,即可得;②证明得即,解方程求解即可;(3)分当点P在上、当点P在上和当点P在上三种情况列式求解即可.【详解】解:(1)当点P与点C重合时,点P到的距离最大,过点C作CF⊥AB于F ∴根据勾股定理,得∵∴.∴当点P与点C重合时,点P到AB的距离最大,最大值为Rt△ABC斜边AB上的高CF,即点P到的最大距离是.(2)①当点P在上运动时,设运动时间为,则有,直线,如图,过点D作于点G,则四边形是矩形,,,即,,即.②,.∵直线直线,,由旋转的性质,得,,,即,.(3)因为点F是点P关于直线的对称点,即垂直平分,所以,当也垂直平分时,四边形为菱形.∵直线,即,①当点P在上时,若垂直平分,则有,解得;②当点P在上时,三点都在x轴上,构不成四边形;③当点P在上时,若点P在直线的右侧,类比①可得:,解得;若点P在直线的左侧,四点构不成凸四边形.综上,当时,四边形为菱形.【点评】此题考查了菱形的判定和性质,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.10.(1)【问题发现】:如图1在Rt△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E与点A重合,易知△ACF∽△BCE.线段BE与AF有怎样的数量关系?请直接写出.(2)【拓展研究】:在(1)的条件下,将正方形CDEF绕点C旋转至如图2所示的位置,连接BE,CE,AF.请猜想线段BE和AF的数量关系,并证明你的结论;(3)【结论运用】:在(1)(2)的条件下,若△ABC的面积为8时,当正方形CDEF旋转到B、E、F点共线时,请直接写出线段AF的长.【答案】(1);(2),证明过程见解答;(3)或.【解析】(1)当点与点重合时,证明和都是等腰直角三角形,所以它们的对应角相等,可得,可推出;(2)由和都是等腰直角三角形可得,再由,可证明,可推出仍然成立;(3)由、、三点共线得,根据图1,由的面积为8,可求出,,且,在中由勾股定理求出的长,再求的长,再由求出的长.【详解】解:(1)结论:,如图1,,,,四边形是正方形,,,,,,点与点重合,,,,;,,,.(2).证明:如图2,由(1)得,,四边形是正方形,,,,,,,,,.(3)如图1,,,点为的中点,,,,的面积为8,,,,,点与点重合,四边形是正方形,;如图2,、、三点共线且点在线段上,,,,.,;如图3,、、三点共线且点在线段上,,,则,.,,综上所述,线段的长为或.【点评】此题重点考查相似三角形的判定与性质、正方形的性质、等腰直角三角形的性质、勾股定理、二次根式的化简以及解直角三角形等知识与方法,此题综合性较强,难度较大,属于考试压轴题.解题关键是利用旋转相似得到,问题(3)难点正确画出图形,得到.11.如图,和是有公共顶点直角三角形,,点P为射线,的交点.(1)如图1,若和是等腰直角三角形,求证:;(2)如图2,若,问:(1)中的结论是否成立?请说明理由.(3)在(1)的条件下,,,若把绕点A旋转,当时,请直接写出的长度【答案】(1)见解析;(2)成立,理由见解析;(3)PB的长为或.【解析】(1)由条件证明△ABD≌△ACE,即可得∠ABD=∠ACE,可得出∠BPC=90°,进而得出BD⊥CP;(2)先判断出△ADB∽△AEC,即可得出结论;(3) 分为点E在AB上和点E在AB的延长线上两种情况画出图形,然后再证明△PEB∽△AEC,最后依据相似三角形的性质进行证明即可.【详解】解:(1)证明:如图,∵∠BAC=∠DAE=90°,∴∠BAE+∠CAE=∠BAD+∠BAE,即∠BAD=∠CAE.∵和是等腰直角三角形,∴, 在△ABD和△ACE中, ,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ACF+∠AFC=90°,∴∠ABP+∠BFP=90°.∴∠BPF=90°,∴BD⊥CP;(2)(1)中结论成立,理由:在Rt△ABC中,∠ABC=30°,∴AB=AC,在Rt△ADE中,∠ADE=30°,∴AD=AE,∴ ∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△ADB∽△AEC.∴∠ABD=∠ACE同(1)得;(3)解:∵和是等腰直角三角形,∴,①当点E在AB上时,BE=AC-AE=1.∵∠EAC=90°,∴CE=.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴∴.∴PB=.②当点E在BA延长线上时,BE=5.∵∠EAC=90°,∴CE=5.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC.∴.∴.∴PB=.综上所述,PB的长为或.【点评】此题主要考查的是旋转的性质、等腰三角形的性质、全等三角形的性质和判定、相似三角形的性质和判定,证明得△PEB∽△AEC是解题的关键.12.如图,正方形ABCD,对角线AC,BD相交于O,Q为线段DB上的一点,,点M、N分别在直线BC、DC上.(1)如图1,当Q为线段OD的中点时,求证:;(2)如图2,当Q为线段OB的中点,点N在CD的延长线上时,则线段DN、BM、BC的数量关系为 ;(3)在(2)的条件下,连接MN,交AD、BD于点E、F,若,,求EF的长.【答案】(1)见解析;(2)BM−DN=BC;(3)EF的长为.【解析】(1)如图1,过Q点作QP⊥BD交DC于P,然后根据正方形的性质证明△QPN∽△QBM,就可以得出结论;(2)如图2,过Q点作QH⊥BD交BC于H,通过证明△QHM∽△QDN,由相似三角形的性质就可以得出结论;(3)由条件设CM=x,MB=3x,就用CB=4x,得出BH=2x,由(2)相似的性质可以求出MQ的值,再根据勾股定理就可以求出MN的值,可以表示出ND,由△NDE∽△NCM就可以求出NE,也可以表示出DE,最后由△DEF∽△BMF而求出结论.【详解】解:(1)如图,过Q点作QP⊥BD交DC于P,∴∠PQB=90°.∵∠MQN=90°,∴∠NQP=∠MQB,∵四边形ABCD是正方形,∴CD=CB,∠BDC=∠DBC=45°.DO=BO,∴∠DPQ=45°,DQ=PQ,∴∠DPQ=∠DBC=45°,∴△QPN∽△QBM,∴,∵Q是OD的中点,且PQ⊥BD,∴DO=2DQ,DP=DC,∴BQ=3DQ,DN+NP=DC=BC,∴BQ=3PQ,∴,∴NP=BM,∴DN+BM=BC;(2)如图,过Q点作QH⊥BD交BC于H,∴∠BQH=∠DQH=90°,∴∠BHQ=45°,∵∠COB=90°,∴QH∥OC,∵Q是OB的中点,∴BH=CH=BC,∵∠NQM=90°,∴∠NQD=∠MQH,∵∠QND+∠NQD=45°,∠MQH+∠QMH=45°,∴∠QND=∠QMH,∴△QHM∽△QDN,∴,∴HM=ND,∵BM-HM=HB,∴BM−DN=BC.故答案为:BM−DN=BC;(3)∵MB:MC=3:1,设CM=x,∴MB=3x,∴CB=CD=4x,∴HB=2x,∴HM=x.∵HM=ND,∴ND=3x,∴CN=7x,∵四边形ABCD是正方形,∴ED∥BC,∴△NDE∽△NCM,△DEF∽△BMF,∴,∴,∴DE=x,∴,∵NQ=9,∴QM=3,在Rt△MNQ中,由勾股定理得:,∴,∴,∴,设EF=a,则FM=7a,∴,∴.∴EF的长为.【点评】本题考查了正方形的性质的运用,相似三角形的判定和性质的运用,勾股定理的运用及平行线等分线段定理的运用,在解答时利用三角形相似的性质求出线段的比是解答本题的关键.13.在矩形中,,点为的中点,点为对角线的中点,点、分别在边、上,且.(1)求的值.(2)求证:.(3)作射线与射线交于点,若,,求的长.【答案】(1);(2)证明过程见解析;(3)【解析】(1)取AB的中点N,连接PN,PM.只要证明△PMF∽△PNE,可得;(2)利用相似三角形的性质即可解决问题;(3)延长CD交EG与H.由BE:AF=3:4,EN=2MF,设BE=3x,AF=4x,FM=a,EN=2a,由AM=2BN,可得4x-a=2(3x-2a),推出a=x,可得AM=AM=x,AD=x,DF=x,AE=x,,在Rt△AEF中,根据勾股定理可得(x)2+(4x)2=29,解得x=,推出,根据DH//AE,,可得,设DG=y,根据DH∥BE,可得,由此构建方程即可.【详解】解:(1)解:取AB的中点N,连接PN,PM.∵AM=MD,PB=PD,AN=NB,∴PM=AB,PN=AD,PM∥AB,PN∥AD,∴四边形ANPM是平行四边形,∵∠A=90°,∴四边形ANPM是矩形,∴∠MPN=∠EPF=90°,∴∠EPN=∠EPM,∵∠PMF=∠PNE=90°,∴△PMF∽△PNE,∴故答案为:;(2)∵为的中位线,∴为中点,∴,又∵∽(已证),∴,∴,∴.(3)延长交于点,∵BE:AF=3:4,EN=2MF,设BE=3x,AF=4x,FM=a,EN=2a,∵AM=2BN,∴4x-a=2(3x-2a),∴a=x,∴AM=x,AD=x,DF=x,AE=x,在Rt△AEF中,∵(x)2+(4x)2=29,解得x=,∴,∵DH//AE,∴,可得,设DQ=y,∵DH//BE,∴,∴,∴.∴.【点评】本题考查相似三角形的性质、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.14.如图,四边形ABCD和四边形AEFG都是正方形,C,F,G三点在一直线上,连接AF并延长交边CD于点M.(1)求证:△MFC∽△MCA;(2)求的值,(3)若DM=1,CM=2,求正方形AEFG的边长.【答案】(1)见解析;(2);(3).【解析】(1)由正方形的性质得∠ACD=∠AFG=45°,进而根据对顶角的性质得∠CFM=∠ACM,再结合公共角,根据相似三角形的判定得结论;(2)根据正方形的性质得,再证明其夹角相等,便可证明△ACF∽△ABE,由相似三角形的性质得出结果;(3)由已知条件求得正方形ABCD的边长,进而由勾股定理求得AM的长度,再由△MFC∽△MCA,求得FM,进而求得正方形AEFG的对角线长,便可求得其边长.【详解】(1)∵四边形ABCD是正方形,四边形AEFG是正方形,∴∠ACD=∠AFG=45°,∵∠CFM=∠AFG,∴∠CFM=∠ACM=45°,∵∠CMF=∠AMC,∴△MFC∽△MCA;(2)∵四边形ABCD是正方形,∴∠ABC=90°,∠BAC=45°,∴AC=AB,同理可得AF=,∴,∵∠EAF=∠BAC=45°,∴∠CAF+∠CAE=∠BAE+∠CAE=45°,∴∠CAF=∠BAE,∴△ACF∽△ABE,∴;(3)∵DM=1,CM=2,∴AD=CD=1+2=3,∴AM=,∵△MFC∽△MCA,∴,即,∴FM=,∴AF=AM﹣FM=,∴AF=,即正方形AEFG的边长为.【点评】本题主要考查了正方形的性质,相似三角形的性质与判定,等腰直角三角形的判定和性质,勾股定理,关键是综合应用这些知识解决问题.15.如图1,分别是的内角的平分线,过点作,交的延长线于点.(1)求证:;(2)如图2,如果,且,求的值;(3)如果是锐角,且与相似,求的度数,并直接写出的值.【答案】(1)证明见解析;(2);(3),或,.【解析】(1)由题意:,根据三角形外内角性质和三角形内角和可得,由此即可解决问题.(2)延长交于点.证明,可得,,由,可得.(3)因为与相似,,所以中必有一个内角为因为是锐角,推出.接下来分两种情形分别求解即可.【详解】(1)证明:如图1中,,,,平分,平分的,,,,,,.(2)解:延长交于点.,,又∵,,,,,,.(3)与相似,,中必有一个内角为是锐角,.①当时,, ,,,,如图,过B点作BH⊥AE,∵,AD平分∠BAC,∴∠BAH=45°,∴AH=BH,,∵,∴,∴,∵,∴.②当时,即时,,,,如解图(3)-2;过B点作BH⊥AE,,分别是的内角的平分线,∴,∴BD=AD,又∵,∴,,∴,∴,∴,∴在中,∴综上所述,,或,.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.16.如图1所示,矩形ABCD中,点E,F分别为边AB,AD的中点,将△AEF绕点A逆时针旋转α(0°<α≤360°),直线BE、DF相交于点P.(1)若AB=AD,将△AEF绕点A逆时针旋转至如图2所示的位置,则线段BE与DF的数量关系是 .(2)若AD=nAB(n≠1),将△AEF绕点A逆时针旋转,则(1)中的结论是否仍然成立?若成立,请就图3所示的情况加以证明,若不成立,请写出正确结论,并说明理由.(3)若AB=8,BC=12,将△AEF旋转至AE⊥BE,请算出DP的长.【答案】(1)BE=DF;(2)不成立,结论:DF=nBE;理由见解析(3)或【解析】(1)如图2中,结论:BE=DF,BE⊥DF.证明△ABE≌△ADF(SAS),利用全等三角形的性质可得结论;(2)结论:DF=nBE,BE⊥DF,证明△ABE∽△ADF(SAS),利用相似三角形的性质可得结论;(3)分两种情形画出图形,利用相似三角形的性质以及勾股定理求解即可.【详解】解:(1)结论:BE=DF,BE⊥DF,理由:∵四边形ABCD是矩形,AB=AD,∴四边形ABCD是正方形,AE=AB,AF=AD,∴AE=AF,∵∠DAB=∠EAF=90°,∴∠BAE=∠DAF,∴△ABE≌△ADF(SAS),∴BE=DF,故答案为:BE=DF;(2)结论不成立,结论:DF=nBE,∵AE=AB,AF=AD,AD=nAB,∴AF=nAE,∴AF∶AE=AD∶AB,∴AF∶AE=AD∶AB,∵∠DAB=∠EAF=90°,∴∠BAE=∠DAF,∴△BAE∽△DAF,∴DF∶BE=AF∶AE=n,∠ABE=∠ADF,∴DF=nBE;(3)如图4-1中,当点P在BE的延长线上时,在Rt△AEB中,∵∠AEB=90°,AB=8,AE=AB=4,∴BE==,∵△ABE∽△ADF,∴=,∴=,∴DF=,∵四边形AEPF是矩形,∴AE=PF=4,∴PD=DF-PF=;如图4-2中,当点P在线段BE上时,同法可得DF=,PF=AE=4,∴PD=DF+PF=,综上所述,满足条件的PD的值为或.【点评】此题考查了矩形的性质,全等三角形的判定及性质,旋转的性质,相似三角形的判定及性质,勾股定理,注意应用分类思想解决问题, 是一道较难的几何综合题.17.将正方形的边绕点逆时针旋转至 ,记旋转角为.连接,过点作垂直于直线,垂足为点,连接,如图1,当时,的形状为 ,连接,可求出的值为 ; 当且时,①中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点为顶点的四边形是平行四边形时,请直接写出的值.【答案】(1)等腰直角三角形,;(2)①结论不变,理由见解析;②3或1.【解析】(1)根据题意,证明是等边三角形,得,计算出,根据,可得为等腰直角三角形;证明,可得的值;(2)①连接BD,通过正方形性质及旋转,表示出,结合,可得为等腰直角三角形;证明,可得的值;②分为以CD为边和CD为对角线两种情况进行讨论即可.【详解】(1)由题知°,°,∴°,且为等边三角形 ∴°,∴∵∴°∴°∴为等腰直角三角形连接BD,如图所示∵°∴即∵∴∴故答案为:等腰直角三角形,(2)①两个结论仍然成立连接BD,如图所示: ∵,∴∵∴∴∵∴∴是等腰直角三角形∴∵四边形为正方形∴∴∵∴∴∴∴结论不变,依然成立②若以点为顶点的四边形是平行四边形时,分两种情况讨论第一种:以CD为边时,则,此时点在线段BA的延长线上,如图所示:此时点E与点A重合,∴,得;②当以CD为对角线时,如图所示:此时点F为CD中点,∵∴∵∴∴∴∴∴综上:的值为3或1.【点评】本题考查了正方形与旋转综合性问题,能准确的确定相似三角形,是解决本题的关键.18.如图,在△ABC中,∠ACB=90°,AC=BC,以C为顶点作等腰直角三角形CMN.使∠CMN=90°,连接BN,射线NM交BC于点D.(1)如图1,若点A,M,N在一条直线上,①求证:BN+CM=AM;②若AM=4,BN=,求BD的长;(2)如图2,若AB=4,CN=2,将△CMN绕点C顺时针旋转一周,在旋转过程中射线NM交AB于点H,当三角形DBH是直角三角形时,请你直接写出CD的长.【答案】(1)①证明见解析;②;(2)2.【解析】(1)①如图,过点C作CF⊥CN,交AN于点F,由等腰直角三角形的性质,可求∠CNM=45°,CM=MN,即可证∠FCN=∠ACB,∠CFN=∠CNF=45°,根据“SAS”可证△ACF≌△BCN,可得AF=BN,根据等腰直角三角形的性质可得MF=MN=CM,即可证BN+CM=AM;②由题意可求出CM=MN=,由全等三角形的性质可得∠CAF=∠CBN,即可证∠MCD=∠CBN,则CM∥BN,可得△MCD∽△NBD,根据相似三角形的性质和勾股定理可求BD的长;(2)分∠BDH=90°,∠DHB=90°两种情况讨论,根据等腰直角三角形的性质可求CD的长.【详解】证明:(1)①如图,过点C作CF⊥CN,交AN于点F,∵△CMN是等腰直角三角形,∴∠CNM=45°,CM=MN,∵CF⊥CN,∠ACB=90°,∴∠FCN=∠ACB,∠CFN=∠CNF=45°,∴∠ACF=∠BCN,CF=CN,且AC=BC,∴△ACF≌△BCN(SAS),∴AF=BN,∵CF=CN,CM⊥MN,∴MF=MN=CM,∴AM=AF+FM=BN+CM②∵AM=4,BN=,BN+CM=AM,∴CM=MN=,∵△ACF≌△BCN,∴∠CAF=∠CBN,∵∠CAF+∠ACF=∠CFN=45°,∠BCN+∠MCD=∠MCN=45°∴∠CAF=∠MCD,且∠CAF=∠CBN,∴∠MCD=∠CBN∴CM∥BN∴△MCD∽△NBD,∠CMD=∠BND=90°∴=∴MD=ND∵MD+ND=MN=∴ND=在Rt△DNB中,BD==(2)若∠BDH=90°,如图,此时点M与点D重合,∵△CMN是等腰直角三角形,CN=2∴CM=MN=∴CD=,若∠BHD=90°,如图,∵∠BHD=90°,∠B=45°,∴∠BDH=45°∴∠CDN=45°=∠N∴CD=CN=2.【点评】本题是几何变换综合题,考查了等腰直角三角形的性质,全等三角形判定和性质,相似三角形判定和性质以及分类思想,熟练运用这些性质进行推理是本题的关键.
相关试卷
这是一份2023年中考集训20讲专题08:8型相似三角形
这是一份2023年中考集训20讲专题07:A型相似三角形,文件包含专题07A型相似三角形-老师版docx、专题07A型相似三角形-学生版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
这是一份2023年中考集训20讲专题06:圆,文件包含专题06圆-老师版docx、专题06圆-学生版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)