高中物理高考 2021届高考二轮精品专题四 动量和能量的综合应用 学生版
展开
这是一份高中物理高考 2021届高考二轮精品专题四 动量和能量的综合应用 学生版,共18页。试卷主要包含了动量定理和动量守恒定律,动力学,任何个人等内容,欢迎下载使用。
专题 四
××
动量和能量的综合应用
命题趋势
对于本专题知识,单独考查动量及动量守恒,多为简单的选择题;而动量和能量的综合性问题则以计算题形式命题,难度较大,常与曲线运动,带电粒子在电磁场中运动和导体棒切割磁感线相联系。
考点清单
一、动量定理和动量守恒定律
1.恒力的冲量可应用I=Ft直接求解,变力的冲量优先考虑应用动量定理求解,合外力的冲量可利用I=F合·t或I合=Δp求解。
2.动量守恒表达式:m1v1+m2v2=m1v′1+m2v′2或p=p′或Δp=0。
3.“一动一静”模型中,两物体发生弹性正碰后的速度满足:v1=v0、v2=v0。
二、动力学、动量和能量观点的综合应用
动量与能量的综合问题,常取材“滑块—滑板”模型、“传送带”模型、“弹簧—物块”模型等,设置多个情景、多个过程,考查力学三大观点的综合应用。要成功解答此类“情景、过程综合”的考题,就要善于在把握物理过程渐变规律的同时,洞察过程的临界情景,结合题给条件(往往是不确定条件),进行求解(注意结合实际情况分类讨论)。
精题集训
(70分钟)
经典训练题
1. 运动员在水上做飞行运动表演,如图所示,他操控喷射式悬浮飞行器将竖直送上来的水反转180°后向下喷出,令自己悬停在空中。已知运动员与装备的总质量为90 kg,两个喷嘴的直径均为10 cm,重力加速度大小g=10 m/s2,水的密度ρ=1.0×103 kg/m3,则喷嘴处喷水的速度大约为( )
A.2.7 m/s B.5.4 m/s C.7.6 m/s D.10.8 m/s
2.如图所示,有一个以v0=6 m/s的速度逆时针匀速运动的水平传送带,传送带左端点M与光滑水平平台相切,在M点左侧P处竖直固定一个弹性挡板(物块与弹性挡板碰撞无机械能损失,PM间有很小的缝隙且不与传送带相连,物块在PM段运动的时间忽略不计)。在M左侧缝隙处安装有自动控制系统,当小物块b每次向右经过缝隙时都会被系统瞬时锁定从而保持静止。传送带N端与半径r=5 m的光滑四分之一圆弧相切且不与传送带相连,在小物块a从圆弧最高点由静止下滑后滑上传送带,经过M点时控制系统会使静止在M点左侧缝隙处的小物块b自动解锁,a与b发生第一次弹性正碰。已知a的质量m=1 kg,b的质量M=3 kg,两个物块均可视为质点,物块与传送带间的动摩擦因数μ=0.2,MN间的距离L=22 m,g=10 m/s2。不计经过M、N两点处的能量损失。求:
(1)a与b第一次碰撞前a在传送带上运动的时间;
(2)a与b第一次碰撞后到最后静止过程中运动的总时间。
高频易错题
1.某电影里两名枪手在房间对决,他们各自背靠墙壁,一左一右。假设他们之间的地面光滑随机放着一均匀木块,木块到左右两边的距离不一样。两人拿着相同的步枪和相同的子弹同时朝木块射击一发子弹,听天由命。但是子弹都没有射穿木块,两人都活了下来反而成为了好朋友。假设你是侦探,仔细观察木块发现右边的射孔(弹痕)更深。设子弹与木块的作用力大小一样,请你分析一下,哪个结论是正确的( )
A.开始时,木块更靠近左边的人,左边的人相对更安全
B.开始时,木块更靠近左边的人,右边的人相对更安
C.开始时,木块更靠近右边的人,左边的人相对更安全区
D.开始时,木块更靠近右边的人,右边的人相对更安全
2.(2019·全国卷Ⅲ·25)静止在水平地面上的两小物块A、B,质量分别为mA=1.0 kg,mB=4.0 kg;两者之间有一被压缩的微型弹簧,A与其右侧的竖直墙壁距离l=1.0 m,如图所示。某时刻,将压缩的微型弹簧释放,使A、B瞬间分离,两物块获得的动能之和为Ek=10.0 J。释放后,A沿着与墙壁垂直的方向向右运动。A、B与地面之间的动摩擦因数均为μ=0.20,重力加速度取g=10 m/s2。A、B运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短。
(1)求弹簧释放后瞬间A、B速度的大小;
(2)物块A、B中的哪一个先停止?该物块刚停止时A与B之间的距离是多少?
(3)A和B都停止后,A与B之间的距离是多少?
精准预测题
1.一机枪架在湖中小船上,船正以1 m/s的速度前进,小船及机枪总质量M=200 kg,每颗子弹质量为m=20 g,在水平方向机枪以v=600 m/s的对地速度射出子弹,打出5颗子弹后船的速度可能为( )
A.1.4 m/s B.2 m/s C.0.8 m/s D.0.5 m/s
2.2020年11月10日,全国皮划艇静水锦标赛在浙江省丽水市水上运动中心开幕。大赛前,甲、乙两个运动员分别划动两艘皮划艇沿同一方向进行赛前训练,他们分别划动了一段时间后让各自的皮划艇自由滑行,一段时间后停下。他们及各自的皮划艇总质量相等,测速器测得甲、乙的v-t图像分别如图中的OAB、O′CD所示,图中AB//CD,则( )
A.运动员乙较晚停下,乙做功更多
B.乙划桨时间长,乙划桨时受到水反作用力的冲量大
C.甲皮划艇早停下,甲划桨时受到水反作用力的冲量小
D.甲在划桨时用力小
3.(多解)如图所示,光滑水平面上A球向右运动与静止的B球发生正碰,A球碰撞前后速率之比为4∶1。碰后A、B球均向右运动滑上光滑斜面,沿斜面上升的最大高度之比为1∶4,已知斜面与水平面平滑连接,两球质量分别为mA、mB,碰撞前后两球总动能分别为Ek1、Ek2,则( )
A.mA∶mB=4∶3 B.mA∶mB =2∶3
C.Ek1∶Ek2=16∶7 D.Ek1∶Ek2=16∶13
4.(多解)沙滩排球,是风靡全世界的一项体育运动。假设在某次进行排球运动时,质量为m的排球从距离沙滩表面高度为H的A点由静止释放,落到沙滩并陷入深度为h的B点时速度减为零,如图所示。不计空气阻力,重力加速度为g。则关于排球过程中,下列说法正确的是( )
A.整个下落过程中,排球的机械能减少了mgH
B.整个下落过程中,排球克服阻力做的功为mg(H+h)
C.在陷入沙滩过程中,排球动量的改变量的大小等于m
D.在陷入沙滩过程中,排球所受阻力的冲量大小大于m
5.(多解)如图所示,小球A质量为m,B为圆弧面的槽,质量M=km(k大于1),半径为R,其轨道末端与足够大的水平地面相切。水平地面有紧密相挨的若干个小球,质量均为m,右边有一个固定的弹性挡板。现让小球A从B最高点的正上方距地面高为h处静止释放,经B末端滑出,与水平面上的小球发生碰撞。设小球间、小球与挡板间的碰撞均为弹性正碰,所有接触面均光滑,重力加速度为g。则( )
A.整个过程中,小球A和B组成的系统动量守恒
B.经过足够长的时间后,所有小球都将静止
C.小球A第一次从B的轨道末端水平滑出时的速度大小为
D.若小球A第一次返回恰好没有冲出B的上端,则
6.如图所示,固定的粗糙斜面,倾角θ=30°,斜面底端O处固定一个垂直斜面的弹性挡板。在斜面上P、Q两点有材质相同、质量均为m的滑块A和B,A和B恰好能静止,且均可视为质点,Q到O的距离是L,Q到P的距离是kL(k>0)。现始终给A施加一个大小为F=mg、方向沿斜面向下的力,A开始运动,g为重力加速度。设A、B之间以及B与挡板之间的碰撞时间极短,且无机械能损失,滑块与斜面间的最大静摩擦力等于滑动摩擦力。求:
(1)A、B第一次碰撞后瞬间它们的速率分别为多少;
(2)A、B第一次碰撞与第二次碰撞之间的时间。
7.如图所示,足够长的传送带与水平面的夹角θ=30°,传送带顺时针匀速转动的速度大小v0=2 m/s,物块A的质量m1=1 kg,与传送带间的动摩擦因数μ1=;物块B的质量m2=3 kg,与传送带间的动摩擦因数μ2=。将两物块由静止开始同时在传送带上释放,开始释放时两物块间的距离L=13 m,经过一段时间两物块发生弹性碰撞,碰后立即将A取走。已知重力加速度g=10 m/s2,最大静摩擦力等于滑动摩擦力。
(1)两物块释放后经多长时间发生碰撞?
(2)物块B与传送带摩擦共产生了多少热量?
8.如图,长为L的轻绳一端系于固定点O,另一端系一质量为m的小球,将小球从O点正下方L处,以水平初速度向右抛出,经一定时间绳被拉直,以后小球将以O点为轴在竖直平面内摆动。已知绳刚被拉直时,绳与竖直方向成60°角。求:
(1)小球水平抛出的初速度v0;
(2)在绳被拉紧的瞬间,绳对小球的冲量;
(3)小球摆到最低点时,绳所受的拉力大小。
9.如图,一滑板的上表面由长度为L的水平部分AB和半径为R的四分之一光滑圆弧BC组成,滑板静止于光滑的水平地面上。物体P(可视为质点)置于滑板上面的A点,物体P与滑板水平部分的动摩擦因数为μ(μ<1)。一根长度为L、不可伸长的细线,一端固定于O′点,另一端系一质量为m0的小球Q。小球Q位于最低点时与物体P处于同一高度并恰好接触。现将小球Q拉至与O′同一高度(细线处于水平拉直状态),然后由静止释放,小球Q向下摆动并与物体P发生弹性碰撞(碰撞时间极短)。设物体P的质量为m,滑板的质量为2m。
(1)求小球Q与物体P碰撞前瞬间细线对小球拉力的大小;
(2)若物体P在滑板上向左运动从C点飞出,求飞出后相对C点的最大高度;
(3)要使物体P在相对滑板反向运动过程中,相对地面有向右运动的速度,求的取值范围。
参考答案
经典训练题
1.【答案】B
【解析】两个喷嘴的横截面积均为S=πd2,根据平衡条件可知每个喷嘴对水的作用力为F=mg,取质量为Δm=ρSvΔt的水为研究对象,根据动量定理得FΔt=2Δmv,联立解得v≈5.4 m/s,B正确。
【点评】本题是反冲运动模型,涉及力与时间的问题,优先考虑动量与冲量。
2.【解析】(1)设小物块a从圆弧最高点由静止下滑到达最低点速度为v1,根据动能定理有:
mgr=mv
解得v1=10 m/s
a以10 m/s滑上传送带,做匀减速运动,根据牛顿第二定律:μ·2mg=ma
解得a=2 m/s2
假设a经过t1减速到v0=6 m/s,v0=v1-at
代入数据求得t1=2 s
在t1内a的位移=16 m
x1<L,所以a先减速运动,后匀速运动,匀速运动时间为t2,则=1 s
所以a与b第一次碰撞前物块a在传送带上运动的时间t=t1+t2=3 s。
(2)a与b第一次碰撞,动量守恒、机械能守恒,碰后a的速度为va1,b的速度为vb1,则有:
mv0=mva1+Mvb1
mv02=mva12+Mvb12
解得:va1=-3 m/s,vb1=3 m/s。
a与b第一次碰撞后沿传送带向右减速到零,再向左加速返回M点,返回到M点的速度大小为va1,所用时间
a、b碰后,b向左与挡板P碰后反弹,速度等大反向,经M点时被锁定而静止,此后,a与b发生第二次碰撞,以后重复这个过程,根据动量守恒、机械能守恒,每次碰后的速度是碰前的二分之一,最后静止在M点。
a与b第二次碰撞后沿传送带向右减速到零,再向左加速到M点,所用时间
a与b第三次碰撞后沿传送带向右减速到零,再向左加速到M点,所用时间
a与b第n次碰撞后沿传送带向右减速到零,再向左加速到M点,所用时间
根据无穷等比数列求和公式可得:a与b第一次碰撞后a运动的总时间。
【点评】光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析。
高频易错题
1.【解析】子弹的质量与射出时的速度都相等,两子弹与木块组成的系统总动量为零;如果木块在正中间,则弹痕应该一样长,结果是右边的长一些,假设木块靠近其中某一人,设子弹质量为m,初速度为v0,木块质量为M,阻力为f,弹痕长度分别为x1、x2,两子弹与木块组成的系统在水平方向所受合外力为零,系统动量守恒,以向右为正方向,由动量守恒定律得mv0=(M+m)v1,由能量守恒定律得mv02=(M+m)v12+fx1,对另一发子弹,同样有(M+m)v1-mv0=0,mv02+(M+m)v12=fx2 ,解得x1<x2,综合判断,后接触木块的子弹弹痕长,更容易射穿木块,对面的人更危险,所以一开始木块离左边近一些,右边的人相对更安全,故B正确,ACD错误。
【答案】B
【点评】本题考查了动量守恒定律的应用,根据题意分析清楚子弹与木块的运动过程、正确选择研究对象是解题的关键。
2.【解析】(1)设弹簧释放瞬间A和B的速度大小分别为vA、vB,以向右为正方向,由动量守恒定律和题给条件有:
0=mAvA-mBvB①
Ek=mAv+mBv②
联立①②式并代入题给数据得:vA=4.0 m/s,vB=1.0 m/s。③
(2)A、B两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a。假设A和B发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B。设从弹簧释放到B停止所需时间为t,B向左运动的路程为sB,则有:
mBa=μmBg④
sB=vBt-at2⑤
vB-at=0⑥
在时间t内,A可能与墙发生弹性碰撞,碰撞后A将向左运动,碰撞并不改变A的速度大小,所以无论此碰撞是否发生,A在时间t内的路程sA都可表示为:sA=vAt-at2⑦
联立③④⑤⑥⑦式并代入题给数据得:sA=1.75 m,sB=0.25 m⑧
这表明在时间t内A已与墙壁发生碰撞,但没有与B发生碰撞,此时A位于出发点右边0.25 m处。B位于出发点左边0.25 m处,两物块之间的距离s=0.25 m+0.25 m=0.50 m。⑨
(3)t时刻后A将继续向左运动,假设它能与静止的B碰撞,碰撞时速度的大小为vA′,由动能定理有:
mAvA′2-mAv=-μmAg⑩
联立③⑧⑩式并代入题给数据得:vA′= m/s⑪
故A与B将发生碰撞。设碰撞后A、B的速度分别为vA″和vB″,由动量守恒定律与机械能守恒定律有:
mA=mAvA″+mBvB″⑫
mAvA′2=mAvA″2+mBvB″2⑬
联立⑪⑫⑬式并代入题给数据得:vA″= m/s,vB″=- m/s⑭
这表明碰撞后A将向右运动,B继续向左运动。设碰撞后A向右运动距离为sA′时停止,B向左运动距离为sB′时停止,由运动学公式2asA′=vA″2,2asB′=vB″2⑮
由④⑭⑮式及题给数据得:sA′=0.63 m,sB′=0.28 m⑯
sA′小于碰撞处到墙壁的距离。由上式可得两物块停止后的距离s′=sA′+sB′=0.91 m。
【点评】本题涉及动量守恒定律、直线运动规律等,关键是做好每个阶段的运动分析,理清楚需要求解的物理量与两个物块的运动过程之间存在什么关系。本题的易错点在于分析物块的运动过程时,不能得出完整的运动情况,对于每个阶段到底应该用运动学知识还是动量守恒定律或能量守恒定律认识不够,从而造成错解。
精准预测题
1.【答案】C
【解析】若子弹射出方向与船前进的方向在同一直线上,则子弹、机枪和小船组成的系统动量守恒,取船前进的方向为正方向,若子弹向船前进的方向射出,则有Mv0=(M-5m)v′+5mv,解得v1′=0.7 m/s,若子弹向船前进的反方向射出,则有Mv0=(M-5m)v′-5mv,解得v2′=1.3 m/s,当子弹对地的速度方向与船原来的速度方向的夹角θ在0°<θ<180°内,可见船速应在0.7~1.3 m/s之间。
2.【答案】D
【解析】由图像可知,减速阶段斜率相同,则加速度相同,水的阻力相同;最大速度相同,由动能定理得WF-fs=mvm2,运动员乙加速阶段的位移小,乙做功WF小,A错误;乙加速度阶段时间短,划桨时间短,B错误;由I-ft=mvm,甲皮划艇加速阶段的时间长,甲划桨时受到水反作用力的冲量I大,C错误;由牛顿第二定律得F-f=ma,加速阶段甲的斜率小,加速度小,在划桨时用力F小,D正确。
3.(多解)
【答案】BC
【解析】光滑水平面上A球向右运动与静止的B球发生正碰,根据动量守恒和能量守恒有mAv0=mAv1+mBv2,mAv12=mAgh1,mBv22=mBgh2,碰撞前后两球的总动能为Ek1=mAv02,Ek2=mAv12+mBv22,A球碰撞前后速率之比为4∶1。沿斜面上升的最大高度之比为1∶4,解得mA∶mB =2∶3,Ek1∶Ek2=16∶7。故选BC。
4.(多解)
【答案】BCD
【解析】由动能定理mg(H+h)+Wf=0,小球的机械能减少了mg(H+h),克服阻力做的功为mg(H+h),所以A错误,B正确;小球自由落下至地面过程,机械能守恒mgH=mv2,v=,落到地面上后又陷入泥潭中,由动量定理IG-If=0-mv,小球动量的改变量等于合外力的冲量,而If=IG+mv=IG+m>m,小球所受阻力的冲量大于m,所以CD正确。
5.(多解)
【答案】CD
【解析】由于整个过程中,弹性墙不断对小球有冲量,因此小球A和B组成的系统动量不守恒,A错误;由于系统没有摩擦,不会损耗机械能,因此经过足够长的时间后,小球A和斜面B不会停下来,而应小球A和斜面B一起向左运动,斜面B的速度大于小球A的速度,B错误;小球A第一次从B的轨道末端水平滑出时,根据水平方向动量守恒,系统机械能守恒可知mgh=mv12+Mv22,mv1-Mv2=0,解得,,C正确;由于小球质量相同,发生弹性碰撞,速度互换,最终小球A以速度v1向左运动,冲上斜面B时满足水平方向动量守恒,系统机械能守恒,到达最高点时两者速度相同,mv1+Mv2=(m+M)v3,mv12+Mv22=(m+M)v32+mgR,整理得,D正确。
6.【解析】(1)A和B恰好能静止则表明:mgsin θ=μmgcos θ
当给A施加一个大小为F=mg、方向沿斜面向下的力,A开始运动,由牛顿第二定律可得a=g
A碰前的速度v12=2gkL
A与B发生弹性碰撞,则有:
m1v1=mv2+mv1′
m1v12=mv22+mv1′2
解得:v1′=0,。
(2)碰后B运动到底端所用时间
A运动到底端所用时间
若t1=t2,解得k=
当k<时,A与B同向相撞(即B与挡板碰撞前A、B发生第二次碰撞),此时有:gt2=v2t
解得
当k>时A与B反向相撞(即B先与挡板碰撞反向后与A发生第二次碰撞),碰后B匀速运动,运动到底端的时间为
B与挡板碰后原速率返回:mgsin θ+μmgcos θ=ma′
解得a′=g
A、B加速度相同,相向运动,则:L-gt12=(v2+gt1)(t-t1)
解得:。
7.【解析】(1)刚释放时,A沿斜面向下运动,a1=gsin θ-μ1gcos θ=2 m/s2
B沿斜面向上加速,a2=μ2gcos θ-gsin θ=1 m/s2
B加速至与传送带速度相同时,由速度公式v0=a2t0得t0=2 s
由于a1t02+a2t02=6 m<L
故经t0=2 s时两物块还没相撞,设经t时间两物块相撞,有:
L=a1t2+a2t2+v0(t-t0)
解得:t=3 s或t=-5 s(舍去)。
(2)两物块碰撞前A速度大小v1=a1t=6 m/s
碰撞过程,取沿斜面向上为正方向,根据动量守恒定律得:
m2v0-m1v1=m1vA+m2vB
m2v02+m1v12=m1vA2+m2vB2
联立解得:vA=6 m/s,vB=-2 m/s
碰前B与传送带的相对位移m
碰后至B与传送带共速,所用时间s
Δx2=v0Δt2-(vBΔt2+a2Δt22)=8 m
故总热量Q=μ2m2gcos θ(Δx1+Δx2)=180 J。
8.【解析】(1)小球被抛出后到绳拉紧前做平抛运动,绳拉紧时,小球下落高度
h=Lcos 60°-L=L
小球水平位移x=Lsin 60°=L
小球做平抛运动的时间t=
小球水平抛出的初速度v0=
联立解得:v0=。
(2)绳拉紧前瞬间,小球竖直分速度vy=gt=
此时小球速度与竖直方向夹角
解得α=60°
则小球速度恰沿绳方向向外,绳拉紧时,使小球速度减为0,由动量定理可得:
I=0-mv==-m
则绳对小球的冲量大小为m,方向沿绳向上。
(3)小球做圆周运动时,摆至最低点过程中,由动能定理得:mgL(1-cos 60°)=mv2-0
在最低点由牛顿第二定律得:
联立解得:T=2mg。
9.【解析】(1)小球Q在下落过程中机械能守恒,因此有:
m0gL=m0vQ2
在最低点对小球Q牛顿第二定律可得:
联立解得:T=3m0g。
(2)小球Q和物块P发生弹性碰撞,则机械能和动量守恒,因此
m0vQ=m0vQ′+mv0
m0vQ 2=m0vQ′2+mv02
解得
物体和滑板在水平方向上不受力,则水平方向动量守恒:mv0=3mv1
由能量守恒可得:m0v02=m(v12+vy2)+×2mv12+μmgL+mgR
物体离开滑板后两物体水平方向都做匀速直线运动,因此水平相对位置不变,竖直方向
联立可得:。
(3)要求P有相对地面向右的速度,说明P要滑到曲面上再返回运动,物块P相对滑板反方向运动过程中,可以知道当再次回到B点时两者的速度最大,此时P有向右运动的速度即可,因此再次回到B时水平方向动量守恒可得:mv0=mvA+2mvB
由能量守恒可得:mv02=mvA2+×2mvB2+μmgL
联立可得方程:3vA2-2v0vA-v02+4μmgL=0
因物体要经过B点,因此要求判别式Δ=4v02-12(4μmgL-v02)>0
速度向右说明结果要小于零,则
则
联立可得:。
维权 声明
江西多宝格教育咨询有限公司(旗下网站:好教育http://www.jtyhjy.com)郑重发表如下声明:
一、本网站的原创内容,由本公司依照运营规划,安排专项经费,组织名校名师创作,经由好教育团队严格审核通校,按设计版式统一精细排版,并进行版权登记,本公司拥有著作权;
二、本网站刊登的课件、教案、学案、试卷等内容,经著作权人授权,本公司享有独家信息网络传播权;
三、任何个人、企事业单位(含教育网站)或者其他组织,未经本公司许可,不得以复制、发行、表演、广播、信息网络传播、改编、汇编、翻译等任何方式使用本网站任何作品及作品的组成部分;
四、一旦发现侵犯本网站作品著作权的行为,欢迎予以举报(举报电话:0791-83857059),举报内容对查实侵权行为确有帮助的,一经确认,将给予奖励;
五、我们将联合全国各地文化执法机关和相关司法机构,并结合广大用户和网友的举报,严肃清理侵权盗版行为,依法追究侵权者的民事、行政和刑事责任!
特此声明
江西多宝格教育咨询有限公司
相关试卷
这是一份新高考物理二轮复习专题四 动量和能量的综合应用(含解析),共12页。试卷主要包含了动量定理和动量守恒定律,动力学等内容,欢迎下载使用。
这是一份新高考物理二轮专题 动量和能量,共11页。试卷主要包含了选择题,非选择题等内容,欢迎下载使用。
这是一份2023届高考物理二轮复习专题讲义能量与动量——动力学和能量观点的综合应用讲义,共14页。试卷主要包含了0m,8J → 使用能量的观点分析,4N,5m/s;等内容,欢迎下载使用。