所属成套资源:2022年高考数学真题分类汇编
两年202-2022全国高考数学(理科甲、乙卷)真题按题型分类汇编-解答题(含解析)
展开
这是一份两年202-2022全国高考数学(理科甲、乙卷)真题按题型分类汇编-解答题(含解析),共60页。试卷主要包含了解答题等内容,欢迎下载使用。
两年202-2022全国高考数学(理科甲、乙卷)真题按题型分类汇编-解答题(含解析)
一、解答题
1.(2022·全国·统考高考真题)记为数列的前n项和.已知.
(1)证明:是等差数列;
(2)若成等比数列,求的最小值.
2.(2022·全国·统考高考真题)在四棱锥中,底面.
(1)证明:;
(2)求PD与平面所成的角的正弦值.
3.(2022·全国·统考高考真题)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.
(1)求甲学校获得冠军的概率;
(2)用X表示乙学校的总得分,求X的分布列与期望.
4.(2022·全国·统考高考真题)设抛物线的焦点为F,点,过F的直线交C于M,N两点.当直线MD垂直于x轴时,.
(1)求C的方程;
(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.
5.(2022·全国·统考高考真题)已知函数.
(1)若,求a的取值范围;
(2)证明:若有两个零点,则.
6.(2022·全国·统考高考真题)在直角坐标系中,曲线的参数方程为(t为参数),曲线的参数方程为(s为参数).
(1)写出的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,求与交点的直角坐标,及与交点的直角坐标.
7.(2022·全国·统考高考真题)已知a,b,c均为正数,且,证明:
(1);
(2)若,则.
8.(2022·全国·统考高考真题)记的内角的对边分别为,已知.
(1)证明:;
(2)若,求的周长.
9.(2022·全国·统考高考真题)如图,四面体中,,E为的中点.
(1)证明:平面平面;
(2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值.
10.(2022·全国·统考高考真题)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据:
样本号i
1
2
3
4
5
6
7
8
9
10
总和
根部横截面积
0.04
0.06
0.04
0.08
0.08
0.05
0.05
0.07
0.07
0.06
0.6
材积量
0.25
0.40
0.22
0.54
0.51
0.34
0.36
0.46
0.42
0.40
3.9
并计算得.
(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
附:相关系数.
11.(2022·全国·统考高考真题)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
(1)求E的方程;
(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
12.(2022·全国·统考高考真题)已知函数
(1)当时,求曲线在点处的切线方程;
(2)若在区间各恰有一个零点,求a的取值范围.
13.(2022·全国·统考高考真题)在直角坐标系中,曲线C的参数方程为,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为.
(1)写出l的直角坐标方程;
(2)若l与C有公共点,求m的取值范围.
14.(2022·全国·统考高考真题)已知a,b,c都是正数,且,证明:
(1);
(2);
15.(2021·全国·统考高考真题)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
一级品
二级品
合计
甲机床
150
50
200
乙机床
120
80
200
合计
270
130
400
(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?
(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?
附:
0.050
0.010
0.001
k
3.841
6.635
10.828
16.(2021·全国·统考高考真题)已知数列的各项均为正数,记为的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.
①数列是等差数列:②数列是等差数列;③.
注:若选择不同的组合分别解答,则按第一个解答计分.
17.(2021·全国·统考高考真题)已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.
(1)证明:;
(2)当为何值时,面与面所成的二面角的正弦值最小?
18.(2021·全国·统考高考真题)抛物线C的顶点为坐标原点O.焦点在x轴上,直线l:交C于P,Q两点,且.已知点,且与l相切.
(1)求C,的方程;
(2)设是C上的三个点,直线,均与相切.判断直线与的位置关系,并说明理由.
19.(2021·全国·统考高考真题)已知且,函数.
(1)当时,求的单调区间;
(2)若曲线与直线有且仅有两个交点,求a的取值范围.
20.(2021·全国·统考高考真题)在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.
(1)将C的极坐标方程化为直角坐标方程;
(2)设点A的直角坐标为,M为C上的动点,点P满足,写出Р的轨迹的参数方程,并判断C与是否有公共点.
21.(2021·全国·统考高考真题)已知函数.
(1)画出和的图像;
(2)若,求a的取值范围.
22.(2021·全国·统考高考真题)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备
9.8
10.3
10.0
10.2
9.9
9.8
10.0
10.1
10.2
9.7
新设备
10.1
10.4
10.1
10.0
10.1
10.3
10.6
10.5
10.4
10.5
旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
(1)求,,,;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
23.(2021·全国·统考高考真题)如图,四棱锥的底面是矩形,底面,,为的中点,且.
(1)求;
(2)求二面角的正弦值.
24.(2021·全国·统考高考真题)记为数列的前n项和,为数列的前n项积,已知.
(1)证明:数列是等差数列;
(2)求的通项公式.
25.(2021·全国·统考高考真题)设函数,已知是函数的极值点.
(1)求a;
(2)设函数.证明:.
26.(2021·全国·统考高考真题)已知抛物线的焦点为,且与圆上点的距离的最小值为.
(1)求;
(2)若点在上,是的两条切线,是切点,求面积的最大值.
27.(2021·全国·统考高考真题)在直角坐标系中,的圆心为,半径为1.
(1)写出的一个参数方程;
(2)过点作的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.
28.(2021·全国·统考高考真题)已知函数.
(1)当时,求不等式的解集;
(2)若,求a的取值范围.
参考答案:
1.(1)证明见解析;
(2).
【分析】(1)依题意可得,根据,作差即可得到,从而得证;
(2)法一:由(1)及等比中项的性质求出,即可得到的通项公式与前项和,再根据二次函数的性质计算可得.
【详解】(1)因为,即①,
当时,②,
①②得,,
即,
即,所以,且,
所以是以为公差的等差数列.
(2)[方法一]:二次函数的性质
由(1)可得,,,
又,,成等比数列,所以,
即,解得,
所以,所以,
所以,当或时,.
[方法二]:【最优解】邻项变号法
由(1)可得,,,
又,,成等比数列,所以,
即,解得,
所以,即有.
则当或时,.
【整体点评】(2)法一:根据二次函数的性质求出的最小值,适用于可以求出的表达式;
法二:根据邻项变号法求最值,计算量小,是该题的最优解.
2.(1)证明见解析;
(2).
【分析】(1)作于,于,利用勾股定理证明,根据线面垂直的性质可得,从而可得平面,再根据线面垂直的性质即可得证;
(2)以点为原点建立空间直角坐标系,利用向量法即可得出答案.
(1)
证明:在四边形中,作于,于,
因为,
所以四边形为等腰梯形,
所以,
故,,
所以,
所以,
因为平面,平面,
所以,
又,
所以平面,
又因为平面,
所以;
(2)
解:如图,以点为原点建立空间直角坐标系,
,
则,
则,
设平面的法向量,
则有,可取,
则,
所以与平面所成角的正弦值为.
3.(1);
(2)分布列见解析,.
【分析】(1)设甲在三个项目中获胜的事件依次记为,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;
(2)依题可知,的可能取值为,再分别计算出对应的概率,列出分布列,即可求出期望.
【详解】(1)设甲在三个项目中获胜的事件依次记为,所以甲学校获得冠军的概率为
.
(2)依题可知,的可能取值为,所以,
,
,
,
.
即的分布列为
0
10
20
30
0.16
0.44
0.34
0.06
期望.
4.(1);
(2).
【分析】(1)由抛物线的定义可得,即可得解;
(2)法一:设点的坐标及直线,由韦达定理及斜率公式可得,再由差角的正切公式及基本不等式可得,设直线,结合韦达定理可解.
【详解】(1)抛物线的准线为,当与x轴垂直时,点M的横坐标为p,
此时,所以,
所以抛物线C的方程为;
(2)[方法一]:【最优解】直线方程横截式
设,直线,
由可得,,
由斜率公式可得,,
直线,代入抛物线方程可得,
,所以,同理可得,
所以
又因为直线MN、AB的倾斜角分别为,所以,
若要使最大,则,设,则,
当且仅当即时,等号成立,
所以当最大时,,设直线,
代入抛物线方程可得,
,所以,
所以直线.
[方法二]:直线方程点斜式
由题可知,直线MN的斜率存在.
设,直线
由 得:,,同理,.
直线MD:,代入抛物线方程可得:,同理,.
代入抛物线方程可得:,所以,同理可得,
由斜率公式可得:
(下同方法一)若要使最大,则,
设,则,
当且仅当即时,等号成立,
所以当最大时,,设直线,
代入抛物线方程可得,,所以,所以直线.
[方法三]:三点共线
设,
设,若 P、M、N三点共线,由
所以,化简得,
反之,若,可得MN过定点
因此,由M、N、F三点共线,得,
由M、D、A三点共线,得,
由N、D、B三点共线,得,
则,AB过定点(4,0)
(下同方法一)若要使最大,则,
设,则,
当且仅当即时,等号成立,
所以当最大时,,所以直线.
【整体点评】(2)法一:利用直线方程横截式,简化了联立方程的运算,通过寻找直线的斜率关系,由基本不等式即可求出直线AB的斜率,再根据韦达定理求出直线方程,是该题的最优解,也是通性通法;
法二:常规设直线方程点斜式,解题过程同解法一;
法三:通过设点由三点共线寻找纵坐标关系,快速找到直线过定点,省去联立过程,也不失为一种简化运算的好方法.
5.(1)
(2)证明见的解析
【分析】(1)由导数确定函数单调性及最值,即可得解;
(2)利用分析法,转化要证明条件为,再利用导数即可得证.
【详解】(1)[方法一]:常规求导
的定义域为,则
令,得
当单调递减
当单调递增,
若,则,即
所以的取值范围为
[方法二]:同构处理
由得:
令,则即
令,则
故在区间上是增函数
故,即
所以的取值范围为
(2)[方法一]:构造函数
由题知,一个零点小于1,一个零点大于1,不妨设
要证,即证
因为,即证
又因为,故只需证
即证
即证
下面证明时,
设,
则
设
所以,而
所以,所以
所以在单调递增
即,所以
令
所以在单调递减
即,所以;
综上, ,所以.
[方法二]:对数平均不等式
由题意得:
令,则,
所以在上单调递增,故只有1个解
又因为有两个零点,故
两边取对数得:,即
又因为,故,即
下证
因为
不妨设,则只需证
构造,则
故在上单调递减
故,即得证
【点睛】关键点点睛 :本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式
这个函数经常出现,需要掌握
6.(1);
(2)的交点坐标为,,的交点坐标为,.
【分析】(1)消去,即可得到的普通方程;
(2)将曲线的方程化成普通方程,联立求解即解出.
【详解】(1)因为,,所以,即的普通方程为.
(2)因为,所以,即的普通方程为,
由,即的普通方程为.
联立,解得:或,即交点坐标为,;
联立,解得:或,即交点坐标为,.
7.(1)见解析
(2)见解析
【分析】(1)方法一:根据,利用柯西不等式即可得证;
(2)由(1)结合已知可得,即可得到,再根据权方和不等式即可得证.
【详解】(1)[方法一]:【最优解】柯西不等式
由柯西不等式有,
所以,当且仅当时,取等号,所以.
[方法二]:基本不等式
由,,, ,
当且仅当时,取等号,所以.
(2)证明:因为,,,,由(1)得,
即,所以,
由权方和不等式知,
当且仅当,即,时取等号,
所以.
【点睛】(1)方法一:利用柯西不等式证明,简洁高效,是该题的最优解;
方法二:对于柯西不等式不作为必须掌握内容的地区同学,采用基本不等式累加,也是不错的方法.
8.(1)见解析
(2)14
【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;
(2)根据(1)的结论结合余弦定理求出,从而可求得,即可得解.
【详解】(1)证明:因为,
所以,
所以,
即,
所以;
(2)解:因为,
由(1)得,
由余弦定理可得,
则,
所以,
故,
所以,
所以的周长为.
9.(1)证明过程见解析
(2)与平面所成的角的正弦值为
【分析】(1)根据已知关系证明,得到,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;
(2)根据勾股定理逆用得到,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可.
(1)
因为,E为的中点,所以;
在和中,因为,
所以,所以,又因为E为的中点,所以;
又因为平面,,所以平面,
因为平面,所以平面平面.
(2)
连接,由(1)知,平面,因为平面,
所以,所以,
当时,最小,即的面积最小.
因为,所以,
又因为,所以是等边三角形,
因为E为的中点,所以,,
因为,所以,
在中,,所以.
以为坐标原点建立如图所示的空间直角坐标系,
则,所以,
设平面的一个法向量为,
则,取,则,
又因为,所以,
所以,
设与平面所成的角的正弦值为,
所以,
所以与平面所成的角的正弦值为.
10.(1);
(2)
(3)
【分析】(1)计算出样本的一棵根部横截面积的平均值及一棵材积量平均值,即可估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
(2)代入题给相关系数公式去计算即可求得样本的相关系数值;
(3)依据树木的材积量与其根部横截面积近似成正比,列方程即可求得该林区这种树木的总材积量的估计值.
【详解】(1)样本中10棵这种树木的根部横截面积的平均值
样本中10棵这种树木的材积量的平均值
据此可估计该林区这种树木平均一棵的根部横截面积为,
平均一棵的材积量为
(2)
则
(3)设该林区这种树木的总材积量的估计值为,
又已知树木的材积量与其根部横截面积近似成正比,
可得,解之得.
则该林区这种树木的总材积量估计为
11.(1)
(2)
【分析】(1)将给定点代入设出的方程求解即可;
(2)设出直线方程,与椭圆C的方程联立,分情况讨论斜率是否存在,即可得解.
【详解】(1)解:设椭圆E的方程为,过,
则,解得,,
所以椭圆E的方程为:.
(2),所以,
①若过点的直线斜率不存在,直线.代入,
可得,,代入AB方程,可得
,由得到.求得HN方程:
,过点.
②若过点的直线斜率存在,设.
联立得,
可得,,
且
联立可得
可求得此时,
将,代入整理得,
将代入,得
显然成立,
综上,可得直线HN过定点
【点睛】求定点、定值问题常见的方法有两种:
①从特殊入手,求出定值,再证明这个值与变量无关;
②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
12.(1)
(2)
【分析】(1)先算出切点,再求导算出斜率即可
(2)求导,对分类讨论,对分两部分研究
【详解】(1)的定义域为
当时,,所以切点为,所以切线斜率为2
所以曲线在点处的切线方程为
(2)
设
若,当,即
所以在上单调递增,
故在上没有零点,不合题意
若,当,则
所以在上单调递增所以,即
所以在上单调递增,
故在上没有零点,不合题意
若
(1)当,则,所以在上单调递增
所以存在,使得,即
当单调递减
当单调递增
所以
当
当
所以在上有唯一零点
又没有零点,即在上有唯一零点
(2)当
设
所以在单调递增
所以存在,使得
当单调递减
当单调递增,
又
所以存在,使得,即
当单调递增,当单调递减
有
而,所以当
所以在上有唯一零点,上无零点
即在上有唯一零点
所以,符合题意
所以若在区间各恰有一个零点,求的取值范围为
【点睛】方法点睛:本题的关键是对的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.
13.(1)
(2)
【分析】(1)根据极坐标与直角坐标的互化公式处理即可;
(2)方法一:联立l与C的方程,采用换元法处理,根据新设a的取值范围求解m的范围即可.
【详解】(1)因为l:,所以,
又因为,所以化简为,
整理得l的直角坐标方程:
(2)[方法一]:【最优解】参数方程
联立l与C的方程,即将,代入中,
可得,
化简为,
要使l与C有公共点,则有解,
令,则,令,,
对称轴为,开口向上,
,
,
,即m的取值范围为.
[方法二]:直角坐标方程
由曲线的参数方程为,为参数,消去参数,可得,
联立,得,即,即有,即,的取值范围是.
【整体点评】方法一:利用参数方程以及换元,转化为两个函数的图象有交点,是该题的最优解;
方法二:通过消参转化为直线与抛物线的位置关系,再转化为二次函数在闭区间上的值域,与方法一本质上差不多,但容易忽视的范围限制而出错.
14.(1)证明见解析
(2)证明见解析
【分析】(1)利用三元均值不等式即可证明;
(2)利用基本不等式及不等式的性质证明即可.
【详解】(1)证明:因为,,,则,,,
所以,
即,所以,当且仅当,即时取等号.
(2)证明:因为,,,
所以,,,
所以,,
当且仅当时取等号.
15.(1)75%;60%;
(2)能.
【分析】根据给出公式计算即可
【详解】(1)甲机床生产的产品中的一级品的频率为,
乙机床生产的产品中的一级品的频率为.
(2),
故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.
16.证明过程见解析
【分析】选①②作条件证明③时,可设出,结合的关系求出,利用是等差数列可证;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.
选①③作条件证明②时,根据等差数列的求和公式表示出,结合等差数列定义可证;
选②③作条件证明①时,设出,结合的关系求出,根据可求,然后可证是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论.
【详解】选①②作条件证明③:
[方法一]:待定系数法+与关系式
设,则,
当时,;
当时,;
因为也是等差数列,所以,解得;
所以,,故.
[方法二] :待定系数法
设等差数列的公差为d,等差数列的公差为,
则,将代入,
化简得对于恒成立.
则有,解得.所以.
选①③作条件证明②:
因为,是等差数列,
所以公差,
所以,即,
因为,
所以是等差数列.
选②③作条件证明①:
[方法一]:定义法
设,则,
当时,;
当时,;
因为,所以,解得或;
当时,,当时,满足等差数列的定义,此时为等差数列;
当时,,不合题意,舍去.
综上可知为等差数列.
[方法二]【最优解】:求解通项公式
因为,所以,,因为也为等差数列,所以公差,所以,故,当时,,当时,满足上式,故的通项公式为,所以,,符合题意.
【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于的一次函数,直接设出,平方后得到的关系式,利用得到的通项公式,进而得到,是选择①②证明③的通式通法;法二:分别设出与的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,,进而得到;选①③时,按照正常的思维求出公差,表示出及,进而由等差数列定义进行证明;选②③时,法一:利用等差数列的通项公式是关于的一次函数,直接设出,结合的关系求出,根据可求,然后可证是等差数列;法二:利用是等差数列即前两项的差求出公差,然后求出的通项公式,利用,求出的通项公式,进而证明出结论.
17.(1)证明见解析;(2)
【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;
(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;
【详解】(1)[方法一]:几何法
因为,所以.
又因为,,所以平面.又因为,构造正方体,如图所示,
过E作的平行线分别与交于其中点,连接,
因为E,F分别为和的中点,所以是BC的中点,
易证,则.
又因为,所以.
又因为,所以平面.
又因为平面,所以.
[方法二] 【最优解】:向量法
因为三棱柱是直三棱柱,底面,
,,,又,平面.所以两两垂直.
以为坐标原点,分别以所在直线为轴建立空间直角坐标系,如图.
,.
由题设().
因为,
所以,所以.
[方法三]:因为,,所以,故,,所以,所以.
(2)[方法一]【最优解】:向量法
设平面的法向量为,
因为,
所以,即.
令,则
因为平面的法向量为,
设平面与平面的二面角的平面角为,
则.
当时,取最小值为,
此时取最大值为.
所以,此时.
[方法二] :几何法
如图所示,延长交的延长线于点S,联结交于点T,则平面平面.
作,垂足为H,因为平面,联结,则为平面与平面所成二面角的平面角.
设,过作交于点G.
由得.
又,即,所以.
又,即,所以.
所以.
则,
所以,当时,.
[方法三]:投影法
如图,联结,
在平面的投影为,记面与面所成的二面角的平面角为,则.
设,在中,.
在中,,过D作的平行线交于点Q.
在中,.
在中,由余弦定理得,,,
,,
当,即,面与面所成的二面角的正弦值最小,最小值为.
【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.
第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面与面所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面在面上的投影三角形的面积与面积之比即为面与面所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.
18.(1)抛物线,方程为;(2)相切,理由见解析
【分析】(1)根据已知抛物线与相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出坐标,由,即可求出;由圆与直线相切,求出半径,即可得出结论;
(2)方法一:先考虑斜率不存在,根据对称性,即可得出结论;若斜率存在,由三点在抛物线上,将直线斜率分别用纵坐标表示,再由与圆相切,得出与的关系,最后求出点到直线的距离,即可得出结论.
【详解】(1)依题意设抛物线,
,
所以抛物线的方程为,
与相切,所以半径为,
所以的方程为;
(2)[方法一]:设
若斜率不存在,则方程为或,
若方程为,根据对称性不妨设,
则过与圆相切的另一条直线方程为,
此时该直线与抛物线只有一个交点,即不存在,不合题意;
若方程为,根据对称性不妨设
则过与圆相切的直线为,
又,
,此时直线关于轴对称,
所以直线与圆相切;
若直线斜率均存在,
则,
所以直线方程为,
整理得,
同理直线的方程为,
直线的方程为,
与圆相切,
整理得,
与圆相切,同理
所以为方程的两根,
,
到直线的距离为:
,
所以直线与圆相切;
综上若直线与圆相切,则直线与圆相切.
[方法二]【最优解】:设.
当时,同解法1.
当时,直线的方程为,即.
由直线与相切得,化简得,
同理,由直线与相切得.
因为方程同时经过点,所以的直线方程为,点M到直线距离为.
所以直线与相切.
综上所述,若直线与相切,则直线与相切.
【整体点评】第二问关键点:过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;法一是要充分利用的对称性,抽象出与关系,把的关系转化为用表示,法二是利用相切等条件得到的直线方程为,利用点到直线距离进行证明,方法二更为简单,开拓学生思路
19.(1)上单调递增;上单调递减;(2).
【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性;
(2)方法一:利用指数对数的运算法则,可以将曲线与直线有且仅有两个交点等价转化为方程有两个不同的实数根,即曲线与直线有两个交点,利用导函数研究的单调性,并结合的正负,零点和极限值分析的图象,进而得到,发现这正好是,然后根据的图象和单调性得到的取值范围.
【详解】(1)当时,,
令得,当时,,当时,,
∴函数在上单调递增;上单调递减;
(2)[方法一]【最优解】:分离参数
,设函数,
则,令,得,
在内,单调递增;
在上,单调递减;
,
又,当趋近于时,趋近于0,
所以曲线与直线有且仅有两个交点,即曲线与直线有两个交点的充分必要条件是,这即是,
所以的取值范围是.
[方法二]:构造差函数
由与直线有且仅有两个交点知,即在区间内有两个解,取对数得方程在区间内有两个解.
构造函数,求导数得.
当时,在区间内单调递增,所以,在内最多只有一个零点,不符合题意;
当时,,令得,当时,;当时,;所以,函数的递增区间为,递减区间为.
由于,
当时,有,即,由函数在内有两个零点知,所以,即.
构造函数,则,所以的递减区间为,递增区间为,所以,当且仅当时取等号,故的解为且.
所以,实数a的取值范围为.
[方法三]分离法:一曲一直
曲线与有且仅有两个交点等价为在区间内有两个不相同的解.
因为,所以两边取对数得,即,问题等价为与有且仅有两个交点.
①当时,与只有一个交点,不符合题意.
②当时,取上一点在点的切线方程为,即.
当与为同一直线时有得
直线的斜率满足:时,与有且仅有两个交点.
记,令,有.在区间内单调递增;在区间内单调递减;时,最大值为,所当且时有.
综上所述,实数a的取值范围为.
[方法四]:直接法
.
因为,由得.
当时,在区间内单调递减,不满足题意;
当时,,由得在区间内单调递增,由得在区间内单调递减.
因为,且,所以,即,即,两边取对数,得,即.
令,则,令,则,所以在区间内单调递增,在区间内单调递减,所以,所以,则的解为,所以,即.
故实数a的范围为.]
【整体点评】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题,
方法一:将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.
方法二:将问题取对,构造差函数,利用导数研究函数的单调性和最值.
方法三:将问题取对,分成与两个函数,研究对数函数过原点的切线问题,将切线斜率与一次函数的斜率比较得到结论.
方法四:直接求导研究极值,单调性,最值,得到结论.
20.(1);(2)P的轨迹的参数方程为(为参数),C与没有公共点.
【分析】(1)将曲线C的极坐标方程化为,将代入可得;
(2)方法一:设,设,根据向量关系即可求得P的轨迹的参数方程,求出两圆圆心距,和半径之差比较可得.
【详解】(1)由曲线C的极坐标方程可得,
将代入可得,即,
即曲线C的直角坐标方程为;
(2)
[方法一]【最优解】
设,设
,
,
则,即,
故P的轨迹的参数方程为(为参数)
曲线C的圆心为,半径为,曲线的圆心为,半径为2,
则圆心距为,,两圆内含,
故曲线C与没有公共点.
[方法二]:
设点的直角坐标为,,,因为,
所以,,,
由,
即,
解得,
所以,,代入的方程得,
化简得点的轨迹方程是,表示圆心为,,半径为2的圆;
化为参数方程是,为参数;
计算,
所以圆与圆内含,没有公共点.
【整体点评】本题第二问考查利用相关点法求动点的轨迹方程问题,
方法一:利用参数方程的方法,设出的参数坐标,再利用向量关系解出求解点的参数坐标,得到参数方程.
方法二:利用代数方法,设出点的坐标,再利用向量关系将的坐标用点的坐标表示,代入曲线C的直角坐标方程,得到点的轨迹方程,最后化为参数方程.
21.(1)图像见解析;(2)
【分析】(1)分段去绝对值即可画出图像;
(2)根据函数图像数形结和可得需将向左平移可满足同角,求得过时的值可求.
【详解】(1)可得,画出图像如下:
,画出函数图像如下:
(2),
如图,在同一个坐标系里画出图像,
是平移了个单位得到,
则要使,需将向左平移,即,
当过时,,解得或(舍去),
则数形结合可得需至少将向左平移个单位,.
【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解.
22.(1);(2)新设备生产产品的该项指标的均值较旧设备有显著提高.
【分析】(1)根据平均数和方差的计算方法,计算出平均数和方差.
(2)根据题目所给判断依据,结合(1)的结论进行判断.
【详解】(1),
,
,
.
(2)依题意,,,
,所以新设备生产产品的该项指标的均值较旧设备有显著提高.
23.(1);(2)
【分析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,由已知条件得出,求出的值,即可得出的长;
(2)求出平面、的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.
【详解】(1)[方法一]:空间坐标系+空间向量法
平面,四边形为矩形,不妨以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,
设,则、、、、,
则,,
,则,解得,故;
[方法二]【最优解】:几何法+相似三角形法
如图,连结.因为底面,且底面,所以.
又因为,,所以平面.
又平面,所以.
从而.
因为,所以.
所以,于是.
所以.所以.
[方法三]:几何法+三角形面积法
如图,联结交于点N.
由[方法二]知.
在矩形中,有,所以,即.
令,因为M为的中点,则,,.
由,得,解得,所以.
(2)[方法一]【最优解】:空间坐标系+空间向量法
设平面的法向量为,则,,
由,取,可得,
设平面的法向量为,,,
由,取,可得,
,
所以,,
因此,二面角的正弦值为.
[方法二]:构造长方体法+等体积法
如图,构造长方体,联结,交点记为H,由于,,所以平面.过H作的垂线,垂足记为G.
联结,由三垂线定理可知,
故为二面角的平面角.
易证四边形是边长为的正方形,联结,.
,
由等积法解得.
在中,,由勾股定理求得.
所以,,即二面角的正弦值为.
【整体点评】(1)方法一利用空坐标系和空间向量的坐标运算求解;方法二利用线面垂直的判定定理,结合三角形相似进行计算求解,运算简洁,为最优解;方法三主要是在几何证明的基础上,利用三角形等面积方法求得.
(2)方法一,利用空间坐标系和空间向量方法计算求解二面角问题是常用的方法,思路清晰,运算简洁,为最优解;方法二采用构造长方体方法+等体积转化法,技巧性较强,需注意进行严格的论证.
24.(1)证明见解析;(2).
【分析】(1)由已知得,且,取,得,由题意得,消积得到项的递推关系,进而证明数列是等差数列;
(2)由(1)可得的表达式,由此得到的表达式,然后利用和与项的关系求得.
【详解】(1)[方法一]:
由已知得,且,,
取,由得,
由于为数列的前n项积,
所以,
所以,
所以,
由于
所以,即,其中
所以数列是以为首项,以为公差等差数列;
[方法二]【最优解】:
由已知条件知 ①
于是. ②
由①②得. ③
又, ④
由③④得.
令,由,得.
所以数列是以为首项,为公差的等差数列.
[方法三]:
由,得,且,,.
又因为,所以,所以.
在中,当时,.
故数列是以为首项,为公差的等差数列.
[方法四]:数学归纳法
由已知,得,,,,猜想数列是以为首项,为公差的等差数列,且.
下面用数学归纳法证明.
当时显然成立.
假设当时成立,即.
那么当时,.
综上,猜想对任意的都成立.
即数列是以为首项,为公差的等差数列.
(2)
由(1)可得,数列是以为首项,以为公差的等差数列,
,
,
当n=1时,,
当n≥2时,,显然对于n=1不成立,
∴.
【整体点评】(1)方法一从得,然后利用的定义,得到数列的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论;
方法二先从的定义,替换相除得到,再结合得到,从而证得结论,为最优解;
方法三由,得,由的定义得,进而作差证得结论;方法四利用归纳猜想得到数列,然后利用数学归纳法证得结论.
(2)由(1)的结论得到,求得的表达式,然后利用和与项的关系求得的通项公式;
25.(1);(2)证明见详解
【分析】(1)由题意求出,由极值点处导数为0即可求解出参数;
(2)由(1)得,且,分类讨论和,可等价转化为要证,即证在和上恒成立,结合导数和换元法即可求解
【详解】(1)由,,
又是函数的极值点,所以,解得;
(2)[方法一]:转化为有分母的函数
由(Ⅰ)知,,其定义域为.
要证,即证,即证.
(ⅰ)当时,,,即证.令,因为,所以在区间内为增函数,所以.
(ⅱ)当时,,,即证,由(ⅰ)分析知在区间内为减函数,所以.
综合(ⅰ)(ⅱ)有.
[方法二] 【最优解】:转化为无分母函数
由(1)得,,且,
当 时,要证,, ,即证,化简得;
同理,当时,要证,, ,即证,化简得;
令,再令,则,,
令,,
当时,,单减,故;
当时,,单增,故;
综上所述,在恒成立.
[方法三] :利用导数不等式中的常见结论证明
令,因为,所以在区间内是增函数,在区间内是减函数,所以,即(当且仅当时取等号).故当且时,且,,即,所以.
(ⅰ)当时,,所以,即,所以.
(ⅱ)当时,,同理可证得.
综合(ⅰ)(ⅱ)得,当且时,,即.
【整体点评】(2)方法一利用不等式的性质分类转化分式不等式:当时,转化为证明,当时,转化为证明,然后构造函数,利用导数研究单调性,进而证得;方法二利用不等式的性质分类讨论分别转化为整式不等式:当时,成立和当时,成立,然后换元构造,利用导数研究单调性进而证得,通性通法,运算简洁,为最优解;方法三先构造函数,利用导数分析单调性,证得常见常用结论(当且仅当时取等号).然后换元得到,分类讨论,利用不等式的基本性质证得要证得不等式,有一定的巧合性.
26.(1);(2).
【分析】(1)根据圆的几何性质可得出关于的等式,即可解出的值;
(2)设点、、,利用导数求出直线、,进一步可求得直线的方程,将直线的方程与抛物线的方程联立,求出以及点到直线的距离,利用三角形的面积公式结合二次函数的基本性质可求得面积的最大值.
【详解】(1)[方法一]:利用二次函数性质求最小值
由题意知,,设圆M上的点,则.
所以.
从而有.
因为,所以当时,.
又,解之得,因此.
[方法二]【最优解】:利用圆的几何意义求最小值
抛物线的焦点为,,
所以,与圆上点的距离的最小值为,解得;
(2)[方法一]:切点弦方程+韦达定义判别式求弦长求面积法
抛物线的方程为,即,对该函数求导得,
设点、、,
直线的方程为,即,即,
同理可知,直线的方程为,
由于点为这两条直线的公共点,则,
所以,点A、的坐标满足方程,
所以,直线的方程为,
联立,可得,
由韦达定理可得,,
所以,,
点到直线的距离为,
所以,,
,
由已知可得,所以,当时,的面积取最大值.
[方法二]【最优解】:切点弦法+分割转化求面积+三角换元求最值
同方法一得到.
过P作y轴的平行线交于Q,则.
.
P点在圆M上,则
.
故当时的面积最大,最大值为.
[方法三]:直接设直线AB方程法
设切点A,B的坐标分别为,.
设,联立和抛物线C的方程得整理得.
判别式,即,且.
抛物线C的方程为,即,有.
则,整理得,同理可得.
联立方程可得点P的坐标为,即.
将点P的坐标代入圆M的方程,得,整理得.
由弦长公式得.
点P到直线的距离为.
所以,
其中,即.
当时,.
【整体点评】(1)方法一利用两点间距离公式求得关于圆M上的点的坐标的表达式,进一步转化为关于的表达式,利用二次函数的性质得到最小值,进而求得的值;方法二,利用圆的性质,与圆上点的距离的最小值,简洁明快,为最优解;(2)方法一设点、、,利用导数求得两切线方程,由切点弦方程思想得到直线的坐标满足方程,然手与抛物线方程联立,由韦达定理可得,,利用弦长公式求得的长,进而得到面积关于坐标的表达式,利用圆的方程转化得到关于的二次函数最值问题;方法二,同方法一得到,,过P作y轴的平行线交于Q,则.由求得面积关于坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线,联立直线和抛物线方程,利用韦达定理判别式得到,且.利用点在圆上,求得的关系,然后利用导数求得两切线方程,解方程组求得P的坐标,进而利用弦长公式和点到直线距离公式求得面积关于的函数表达式,然后利用二次函数的性质求得最大值;
27.(1),(为参数);
(2)和.
【分析】(1)直接利用圆心及半径可得的圆的参数方程;
(2)先求得过(4,1)的圆的切线方程,再利用极坐标与直角坐标互化公式化简即可.
【详解】(1)由题意,的普通方程为,
所以的参数方程为,(为参数)
(2)[方法一]:直角坐标系方法
①当直线的斜率不存在时,直线方程为,此时圆心到直线的距离为,故舍去.
②当切线斜率存在时,设其方程为,即.
故,即,解得.
所以切线方程为或.
两条切线的极坐标方程分别为和.
即和.
[方法二]【最优解】:定义求斜率法
如图所示,过点F作的两条切线,切点分别为A,B.
在中,,又轴,所以两条切线的斜率分别和.
故切线的方程为,,这两条切线的极坐标方程为和.
即和.
【整体点评】(2)
方法一:直角坐标系中直线与圆相切的条件求得切线方程,再转化为极坐标方程,
方法二:直接根据倾斜角求得切线的斜率,得到切线的直角坐标方程,然后转化为极坐标方程,在本题中巧妙的利用已知圆和点的特殊性求解,计算尤其简洁,为最优解.
28.(1).(2).
【分析】(1)利用绝对值的几何意义求得不等式的解集.
(2)利用绝对值不等式化简,由此求得的取值范围.
【详解】(1)[方法一]:绝对值的几何意义法
当时,,表示数轴上的点到和的距离之和,
则表示数轴上的点到和的距离之和不小于,
当或时所对应的数轴上的点到所对应的点距离之和等于6,
∴数轴上到所对应的点距离之和等于大于等于6得到所对应的坐标的范围是或,
所以的解集为.
[方法二]【最优解】:零点分段求解法
当时,.
当时,,解得;
当时,,无解;
当时,,解得.
综上,的解集为.
(2)[方法一]:绝对值不等式的性质法求最小值
依题意,即恒成立,
,
当且仅当时取等号,
,
故,
所以或,
解得.
所以的取值范围是.
[方法二]【最优解】:绝对值的几何意义法求最小值
由是数轴上数x表示的点到数a表示的点的距离,得,故,下同解法一.
[方法三]:分类讨论+分段函数法
当时,
则,此时,无解.
当时,
则,此时,由得,.
综上,a的取值范围为.
[方法四]:函数图象法解不等式
由方法一求得后,构造两个函数和,
即和,
如图,两个函数的图像有且仅有一个交点,
由图易知,则.
【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法.
方法一采用几何意义方法,适用于绝对值部分的系数为1的情况,
方法二使用零点分段求解法,适用于更广泛的情况,为最优解;
(2)方法一,利用绝对值不等式的性质求得,利用不等式恒成立的意义得到关于的不等式,然后利用绝对值的意义转化求解;
方法二与方法一不同的是利用绝对值的几何意义求得的最小值,最有简洁快速,为最优解法
方法三利用零点分区间转化为分段函数利用函数单调性求最小值,要注意函数中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;
方法四与方法一的不同在于得到函数的最小值后,构造关于的函数,利用数形结合思想求解关于的不等式.
相关试卷
这是一份天津三年2020-2022高考数学真题按题型分类汇编-解答题(含解析),共23页。试卷主要包含了解答题等内容,欢迎下载使用。
这是一份两年2021-2022全国高考数学(文科甲、乙卷共4套)真题按题型分类汇编-选择题(含解析),共32页。试卷主要包含了单选题等内容,欢迎下载使用。
这是一份两年2021-2022全国高考数学(文科甲、乙卷共4套)真题按题型分类汇编-填空题(含解析),共11页。试卷主要包含了填空题,双空题等内容,欢迎下载使用。