终身会员
搜索
    上传资料 赚现金

    考点21 双曲线(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      考点21双曲线(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(原卷版).docx
    • 解析
      考点21双曲线(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(解析版).docx
    考点21双曲线(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(原卷版)第1页
    考点21双曲线(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(原卷版)第2页
    考点21双曲线(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(原卷版)第3页
    考点21双曲线(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(解析版)第1页
    考点21双曲线(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(解析版)第2页
    考点21双曲线(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(解析版)第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    考点21 双曲线(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练

    展开

    这是一份考点21 双曲线(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练,文件包含考点21双曲线核心考点讲与练-2023年高考数学一轮复习核心考点讲与练新高考专用解析版docx、考点21双曲线核心考点讲与练-2023年高考数学一轮复习核心考点讲与练新高考专用原卷版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。


    考点21双曲线(核心考点讲与练)

    1.双曲线的定义

    平面内与两个定点F1F2的距离差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.其数学表达式:集合P{M|||MF1||MF2||2a}|F1F2|2c,其中ac为常数且a>0c>0

    (1)a<c时,则集合P为双曲线;

    (2)ac时,则集合P两条射线

    (3)a>c时,则集合P为空集.

    2.双曲线的标准方程和几何性质

    标准方程

    1(a>0b>0)

    1(a>0b>0)

    图 形

    范围

    xaxayR

    xRyaya

    对称性

    对称轴:坐标轴;对称中心:原点

    顶点

    A1(a0)A2(a0)

    A1(0,-a)A2(0a)

    渐近线

    y±x

    y±x

    离心率

    ee(1,+)

    实虚轴

    线段A1A2叫做双曲线的实轴,它的长度|A1A2|2a;线段B1B2叫做双曲线的虚轴,它的长度|B1B2|2ba叫做双曲线的实半轴长,b叫做双曲线的虚半轴长

    abc的关系

    c2a2b2

     

    1.(1)在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支.若是双曲线的一支,则需确定是哪一支.

    2)在焦点三角形中,正弦定理、余弦定理、双曲线的定义是经常使用的知识点.另外,还经常结合||PF1||PF2||2a,运用平方的方法,建立它与|PF1||PF2|的联系.

    2.与双曲线几何性质有关问题的解题策略

    在研究双曲线的性质时,实半轴、虚半轴所构成的直角三角形是值得关注的一个重要内容;双曲线的离心率涉及的也比较多.由于e是一个比值,故只需根据条件得到关于abc的一个关系式,利用b2c2a2消去b,然后变形求e,并且需注意e1

    3.圆锥曲线的弦长

    1)圆锥曲线的弦长

    直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫作圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长.

    2)圆锥曲线的弦长的计算

    设斜率为k(k≠0)的直线l与圆锥曲线C相交于AB两点,A(x1y1)B(x2y2),则|AB||x1x2| ·|y1y2|(抛物线的焦点弦长|AB|x1x2pθ为弦AB所在直线的倾斜角)

    双曲线的定义

    一、单选题

    1.(2022·广东潮州·二模)若点P是双曲线上一点,分别为的左、右焦点,则的(       ).

    A.充分不必要条件 B.必要不充分条件

    C.充要条件 D.既不充分也不必要条件

    2.(2022·天津河西·一模)已知双曲线的左、右焦点分别为c是双曲线C的半焦距,点A是圆上一点,线段交双曲线C的右支于点B,则双曲线C的离心率为(       ).

    A B C D

    3.(2022·辽宁沈阳·二模)已知双曲线的两个焦点为,点MNC上,且,则双曲线C的离心率为(       

    A B

    C D

    4.(2022·湖南永州·三模)已知双曲线的左、右焦点分别为为坐标原点,点在双曲线的右支上,为双曲线的半焦距),直线与双曲线右支交于另一个点,则双曲线的离心率为(       

    A B C D

    二、多选题

    5.(2022·山东泰安·二模)已知双曲线C的离心率为,且其右顶点为,左,右焦点分别为,点P在双曲线C上,则下列结论正确的是(       

    A.双曲线C的方程为

    B.点A到双曲线C的渐近线的距离为

    C.若,则

    D.若,则的外接圆半径为

    6.(2022·河北唐山·二模)双曲线具有如下光学性质:如图是双曲线的左、右焦点,从右焦点发出的光线m交双曲线右支于点P,经双曲线反射后,反射光线n的反向延长线过左焦点.若双曲线C的方程为,下列结论正确的是(       

    A.若,则

    B.当n时,光由所经过的路程为13

    C.射线n所在直线的斜率为k,则

    D.若,直线PTC相切,则

    7.(2022·重庆八中模拟预测)已知点,若某直线上存在点P,使得,则称该直线为好直线,下列直线是好直线的是(       

    A B C D

    三、填空题

    8.(2022·辽宁葫芦岛·一模)已知双曲线G的方程,其左、右焦点分别是,已知点P坐标为,双曲线G上点满足,则______

    四、解答题

    9.(2022·全国·模拟预测)双曲线的左、右焦点分别为,焦距等于8,点M在双曲线C上,且的面积为12.

    (1)求双曲线C的方程;

    (2)双曲线C的左、右顶点分别为AB,过的斜率不为的直线l与双曲线C交于PQ两点,连接AQBP,求证:直线AQBP的交点恒在一条定直线上.

     

    10.(2022·福建漳州·一模)已知双曲线的左、右焦点分别为,点右支上一点,若I的内心,且.

    (1)的方程;

    (2)A在第一象限的渐近线上的一点,且轴,在点P处的切线l与直线相交于点M,与直线相交于点N.证明:无论点P怎么变动,总有.

     

     

     

     

     

     

     

     

     

    双曲线的几何性质

    1.(2021“四省八校”高三上学期期中质量检测)过双曲线)的右焦点作双曲线渐近线的垂线段,垂足为,线段与双曲线交于点,且满足,则双曲线离心率等于(   

    A    B    C    D

    2.(2021安徽省安庆市怀宁中学高三上学期模拟)若双曲线的一条渐近线与直线相互垂直,则双曲线的两个焦点与虚轴的一个端点构成的三角形的面积为(   

    A.  B.  C. 6 D. 8

    直线与双曲线的位置关系

    1..(江西省南昌市湾里区第一中学等六校联考)已知双曲线Ca> 0b> 0)的离心率为,实轴长为2

    1)求双曲线的焦点到渐近线的距离;

    2)若直线y=x+m被双曲线CC截得的弦长为,求m的值.

     

     

     

     

     

     

    2.(2021河北省部分名校高二上学期期中)在①双曲线的焦点在轴上,②双曲线的焦点在轴上这两个条件中任选一个,补充在下面问题中,并作答.

    已知双曲线的对称轴为坐标轴,且经过点

    (1)求双曲线的方程;

    (2)若双曲线与双曲线的渐近线相同,______,且的焦距为4,求双曲线的实轴长.

    注:若选择两个条件分别解答,按第一个解答计分.

     

     

     

     

     

     

     

     

    1.(2021年全国高考甲卷)点到双曲线的一条渐近线的距离为(   

    A.  B.  C.  D.

    2.(2021年全国高考乙卷)已知双曲线的一条渐近线为,则C的焦距为_________

    3.(2020年全国统一高考(新课标))是双曲线的两个焦点,为坐标原点,点上且,则的面积为(   

    A.  B. 3 C.  D. 2

    4.(2021年全国新高考卷)在平面直角坐标系中,已知点,点的轨迹为.

    1)求的方程;

    2)设点在直线上,过的两条直线分别交两点和两点,且,求直线的斜率与直线的斜率之和.

     

     

     

     

     

     

     

    一、单选题

    1.(2022·重庆八中模拟预测)某中心接到其正东、正西、正北方向三个观测点的报告;正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其它两观测点晚2s,已知各观测点到该中心的距离是680m,则该巨响发生在接报中心的(       )处(假定当时声音传播的速度为340m/s,相关各点均在同一平面上)

    A.西偏北45°方向,距离340m B.东偏南45°方向,距离340m

    C.西偏北45°方向,距离170m D.东偏南45°方向,距离170m

    2.(2022·山东淄博·模拟预测)双曲线的离心率为(       

    A B C D

    3.(2022·全国·模拟预测(理))已知双曲线E的离心率为,若有一直线过E的右顶点A且与一条渐近线平行,交y轴于点B,则OAB的面积是(       

    A2 B C4 D

    4.(2022·山东济宁·二模)过双曲线C的左焦点F作圆的切线,设切点为A,直线FA交直线于点B,若,则双曲线C的渐近线方程为(       

    A B C D

    5.(2022·天津南开·一模)已知双曲线与抛物线的一个交点为M.若抛物线的焦点为F,且,则双曲线的焦点到渐近线的距离为(       

    A B2 C D

    6.(2022·天津河东·一模)已知双曲线的焦点为,抛物线的准线与交于MN两点,且三角形为正三角形,则双曲线的离心率为(       

    A B C D

     

    二、多选题

    7.(2022·辽宁·建平县实验中学模拟预测)已知分别为双曲线的左、右焦点,点M为双曲线右支上一点,设,则下列说法正确的是(       )

    A.线段长度的最小值为

    B.线段长度的最小值为

    C.若当时,(O为坐标原点)恰好为等边三角形,则双曲线C的离心率为

    D.当时,若直线与圆相切,则双曲线C的渐近线的斜率的绝对值为

    8.(2022·江苏·新沂市第一中学模拟预测)已知双曲线的左右焦点分别为F1F2,右顶点为AMOA的中点,P为双曲线C右支上一点且,且,则(       )

    AC的离心率为2 BC的渐近线方程为

    CPM平分 D

    9.(2022·江苏·沭阳如东中学模拟预测)已知直线y=kxk≠0)与双曲线交于AB两点,以AB为直径的圆恰好经过双曲线的右焦点F,若三角形ABF的面积为,则以下正确的结论有(     

    A.双曲线的离心率为2 B.双曲线的离心率为

    C.双曲线的渐近线方程为y=±2x D

    10.(2022·重庆·二模)已知双曲线的左、右顶点分别为,左、右焦点分别为,点是双曲线的右支上一点,且三角形为正三角形(为坐标原点),记的斜率分别为,设的内心,记的面积分别为,则下列说法正确的是(       

    A B.双曲线的离心率为

    C D

    三、填空题

    11.(2022·广东韶关·二模)过双曲线的一个焦点且与x轴垂直的直线,交该双曲线的两条渐近线于PQ两点,则|PQ|=_________

    12.(2022·湖北武汉·二模)如图,发电厂的冷却塔外形是由双曲线的一部分绕其虚轴所在直线旋转所得到的曲面,该冷却塔总高度为70米,水平方向上塔身最窄处的半径为20米,最高处塔口半径25米,塔底部塔口半径为米,则该双曲线的离心率为___________.

    13.(2022·海南海口·模拟预测)在直角坐标系xOy中,抛物线C的焦点为F,双曲线E的右顶点为线段OF的中点,EC交于AB两点.若FABO的重心,则E的离心率为______

    14.(2022·江西·二模(理))已知双曲线C的左焦点为,点P在圆上,若线段FP恰好被C的一条渐近线垂直平分,则C的离心率为___________.

    15.(2022·内蒙古通辽·二模(理))双曲线的渐近线与圆相切,则双曲线E的离心率为______

    四、解答题

    16.(2022·山东潍坊·二模)已知MN为椭圆和双曲线的公共顶点,分别为的离心率.

    (1)

    )求的渐近线方程;

    )过点的直线l的右支于AB两点,直线MAMB与直线相交于两点,记AB的坐标分别为,求证:

    (2)上的动点的两条切线,经过两个切点的直线与的两条渐近线围成三角形的面积为S,试判断S是否为定值?若是,请求出该定值;若不是,请说明理由.

     

     

     

     

     

    17.(2022·江苏·南京市第一中学三模)双曲线经过点,且渐近线方程为

    (1)的值;

    (2)若抛物线C的右支交于点,证明:直线过定点.

     

     

     

     

     

     

    18.(2022·河北秦皇岛·二模)已知双曲线的左右焦点分别为,虚轴长为,离心率为,过的直线与双曲线的右支交于两点.

    (1)求双曲线的方程;

    (2)已知,若的外心的横坐标为0,求直线的方程.

     

     

     

     

     

    19.(2022·河北·模拟预测)已知双曲线的左,右焦点分别为.且该双曲线过点

    (1)C的方程;

    (2)如图.过双曲线左支内一点作两条互相垂直的直线分别与双曲线相交于点AB和点CD.当直线ABCD均不平行于坐标轴时,直线ACBD分别与直线相交于PQ两点,证明:PQ两点关于x轴对称.

    相关试卷

    考点21双曲线(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)(原卷版):

    这是一份考点21双曲线(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)(原卷版),共16页。试卷主要包含了双曲线的定义,双曲线的标准方程和几何性质,圆锥曲线的弦长等内容,欢迎下载使用。

    考点21双曲线(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)(解析版):

    这是一份考点21双曲线(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)(解析版),共52页。试卷主要包含了双曲线的定义,双曲线的标准方程和几何性质,圆锥曲线的弦长等内容,欢迎下载使用。

    新高考数学一轮复习核心考点讲与练考点21双曲线(含解析):

    这是一份新高考数学一轮复习核心考点讲与练考点21双曲线(含解析),共42页。试卷主要包含了双曲线的定义,双曲线的标准方程和几何性质,圆锥曲线的弦长等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map