所属成套资源:2023年新高考数学(人教A版)一轮复习之函数与导数专题复习(含配套练习+解析)
专题16 函数与导数专题测试卷(二)(学生版+教师版)
展开
这是一份专题16 函数与导数专题测试卷(二)(学生版+教师版),文件包含专题16函数与导数专题测试卷二教师版docx、专题16函数与导数专题测试卷二学生版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
函数与导数 专题测试卷(B卷 能力提升)
数学
考试时间:120分钟 满分:150分
一、单选题:本大题共12小题,每个小题5分,共60分.在每小题给出的选项中,只有一项是符合题目要求的.
1.(2009·山东·高考真题(文))已知定义在上的奇函数满足,且在区间上是增函数,则
A. B.
C. D.
【答案】D
【分析】
由,得到函数的周期是8,然后利用函数的奇偶性和单调性之间的关系进行判断大小.
【详解】
因为满足,所以,
所以函数是以8为周期的周期函数,
则.
由是定义在上的奇函数,
且满足,得.
因为在区间上是增函数,是定义在上的奇函数,
所以在区间上是增函数,
所以,即.
【点睛】
在比较,,,的大小时,首先应该根据函数的奇偶性与周期性将,,,通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.
2.(2021·河南·辉县市第一高级中学高二阶段练习(文))设定义在上的函数的导函数为,若,,则不等式(其中为自然对数的底数)的解集为
A. B.
C. D.
【答案】A
【分析】
构造函数,则可判断,故是上的增函数,结合即可得出答案.
【详解】
解:设,
则,
∵,,
∴,
∴是上的增函数,
又,
∴的解集为,
即不等式的解集为.
故选A.
【点睛】
本题考查导数与函数单调性的关系,构造函数是解题的关键.
3.(2015·天津·高考真题(理))已知函数,函数,其中,若函数恰有4个零点,则的取值范围是( )
A. B. C. D.
【答案】D
【详解】
函数恰有4个零点,即方程,
即有4个不同的实数根,
即直线与函数的图象有四个不同的交点.
又
做出该函数的图象如图所示,
由图得,当时,直线与函数的图象有4个不同的交点,
故函数恰有4个零点时,
b的取值范围是故选D.
考点:1、分段函数;2、函数的零点.
【方法点晴】
本题主要考查的是分段函数和函数的零点,属于难题.已知函数的零点个数,一般利用数形结合思想转化为两个函数的图像的交点个数问题,作图时一定要保证图形准确, 否则很容易出现错误.
4.(2021·全国·高考真题(理))设,,.则( )
A. B. C. D.
【答案】B
【分析】
利用对数的运算和对数函数的单调性不难对a,b的大小作出判定,对于a与c,b与c的大小关系,将0.01换成x,分别构造函数,,利用导数分析其在0的右侧包括0.01的较小范围内的单调性,结合f(0)=0,g(0)=0即可得出a与c,b与c的大小关系.
【详解】
,
所以;
下面比较与的大小关系.
记,则,,
由于
所以当0
相关试卷
这是一份高考数学二轮专题复习——导数的44讲专题学生及教师版,文件包含导数的44讲专题教师版pdf、导数的44个专题学生版pdf等2份试卷配套教学资源,其中试卷共629页, 欢迎下载使用。
这是一份专题9函数与导数第4讲导数与不等式-学生及教师版,文件包含专题9函数与导数第4讲导数与不等式-学生版docx、专题9函数与导数第4讲导数与不等式-教师版docx等2份试卷配套教学资源,其中试卷共115页, 欢迎下载使用。
这是一份专题09 导数及其应用(利用导数研究函数的零点、方程的根)学生版及教师版,文件包含专题09导数及其应用利用导数研究函数的零点方程的根教师版pdf、专题09导数及其应用利用导数研究函数的零点方程的根学生版pdf等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。