|试卷下载
终身会员
搜索
    上传资料 赚现金
    云南省曲靖市沾益区播乐乡罗木中学2021-2022学年中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    云南省曲靖市沾益区播乐乡罗木中学2021-2022学年中考适应性考试数学试题含解析01
    云南省曲靖市沾益区播乐乡罗木中学2021-2022学年中考适应性考试数学试题含解析02
    云南省曲靖市沾益区播乐乡罗木中学2021-2022学年中考适应性考试数学试题含解析03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    云南省曲靖市沾益区播乐乡罗木中学2021-2022学年中考适应性考试数学试题含解析

    展开
    这是一份云南省曲靖市沾益区播乐乡罗木中学2021-2022学年中考适应性考试数学试题含解析,共27页。试卷主要包含了考生要认真填写考场号和座位序号,已知二次函数y=a等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.化简的结果为( )
    A.﹣1 B.1 C. D.
    2.如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为(  )

    A. B. C. D.
    3.如图,在△ABC中,∠ACB=90°,点D为AB的中点,AC=3,cosA=,将△DAC沿着CD折叠后,点A落在点E处,则BE的长为(  )

    A.5 B.4 C.7 D.5
    4.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有( )

    A.12 B.48 C.72 D.96
    5.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是(  )

    A. B. C. D.
    6.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有(  )

    A.1对 B.2对 C.3对 D.4对
    7.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为(  )
    A.0.4×108 B.4×108 C.4×10﹣8 D.﹣4×108
    8.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
    A. B.
    C. D.
    9.实数a在数轴上的位置如图所示,则化简后为(  )

    A.7 B.﹣7 C.2a﹣15 D.无法确定
    10.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是(  )
    A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>0
    11.下列分式是最简分式的是( )
    A. B. C. D.
    12.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是(  )

    A. B.2 C. D.2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.将一副三角尺如图所示叠放在一起,则的值是   .

    14.如图,AB是⊙O的直径,CD是⊙O的弦,∠BAD=60°,则∠ACD=_____°.

    15.关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是_____.
    16.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数(x<0)的图象上,则k= .

    17.已知x1,x2是方程x2+6x+3=0的两实数根,则的值为_____.
    18.为了求1+2+22+23+…+22016+22017的值,
    可令S=1+2+22+23+…+22016+22017,
    则2S=2+22+23+24+…+22017+22018,
    因此2S﹣S=22018﹣1,
    所以1+22+23+…+22017=22018﹣1.
    请你仿照以上方法计算1+5+52+53+…+52017的值是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0).△AOB绕着O顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.
    (I)如图1,若α=30°,求点B′的坐标;
    (Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;
    (Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).

    20.(6分)如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.
    (1)观察猜想:
    图1中,PM与PN的数量关系是   ,位置关系是   .
    (2)探究证明:
    将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;
    (3)拓展延伸:
    把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.

    21.(6分)如图①,一次函数y=x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=x2+bx+c的图象经过A、B两点,与x轴交于另一点C.
    (1)求二次函数的关系式及点C的坐标;
    (2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;
    (3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标.

    22.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是   度.若AB=8cm,△MBC的周长是14cm.
    ①求BC的长度;
    ②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.

    23.(8分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.
    (1)求证:△ADC∽△CDB;
    (2)若AC=2,AB=CD,求⊙O半径.

    24.(10分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
    (1)求证:OP=OQ;
    (2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.

    25.(10分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.求证:△AFE≌△CDF;若AB=4,BC=8,求图中阴影部分的面积.

    26.(12分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.
    若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.
    27.(12分)计算:(π﹣1)0+|﹣1|﹣÷+(﹣1)﹣1.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.
    【详解】
    解:.
    故选B.
    2、A
    【解析】
    过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.
    【详解】
    过O作OC⊥AB于C,过N作ND⊥OA于D,

    ∵N在直线y=x+3上,
    ∴设N的坐标是(x,x+3),
    则DN=x+3,OD=-x,
    y=x+3,
    当x=0时,y=3,
    当y=0时,x=-4,
    ∴A(-4,0),B(0,3),
    即OA=4,OB=3,
    在△AOB中,由勾股定理得:AB=5,
    ∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,
    ∴3×4=5OC,
    OC=,
    ∵在Rt△NOM中,OM=ON,∠MON=90°,
    ∴∠MNO=45°,
    ∴sin45°=,
    ∴ON=,
    在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,
    即(x+3)2+(-x)2=()2,
    解得:x1=-,x2=,
    ∵N在第二象限,
    ∴x只能是-,
    x+3=,
    即ND=,OD=,
    tan∠AON=.
    故选A.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.
    3、C
    【解析】
    连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可.
    【详解】
    解:连接AE,

    ∵AC=3,cos∠CAB=,
    ∴AB=3AC=9,
    由勾股定理得,BC==6,
    ∠ACB=90°,点D为AB的中点,
    ∴CD=AB=,
    S△ABC=×3×6=9,
    ∵点D为AB的中点,
    ∴S△ACD=S△ABC=,
    由翻转变换的性质可知,S四边形ACED=9,AE⊥CD,
    则×CD×AE=9,
    解得,AE=4,
    ∴AF=2,
    由勾股定理得,DF==,
    ∵AF=FE,AD=DB,
    ∴BE=2DF=7,
    故选C.
    【点睛】
    本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    4、C
    【解析】
    解:根据图形,
    身高在169.5cm~174.5cm之间的人数的百分比为:,
    ∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).
    故选C.
    5、B
    【解析】
    根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.
    【详解】
    从上面看,是正方形右边有一条斜线,如图:

    故选B.
    【点睛】
    考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.
    6、C
    【解析】
    ∵∠ACB=90°,CD⊥AB,
    ∴△ABC∽△ACD,
    △ACD∽CBD,
    △ABC∽CBD,
    所以有三对相似三角形.
    故选C.
    7、C
    【解析】
    科学记数法的表示形式为a×10 的形式,其中1≤a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    0.000 000 04=4×10,
    故选C
    【点睛】
    此题考查科学记数法,难度不大
    8、A
    【解析】
    若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
    解:设走路线一时的平均速度为x千米/小时,

    故选A.
    9、C
    【解析】
    根据数轴上点的位置判断出a﹣4与a﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.
    【详解】
    解:根据数轴上点的位置得:5<a<10,
    ∴a﹣4>0,a﹣11<0,
    则原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,
    故选:C.
    【点睛】
    此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.
    10、C
    【解析】
    分a>1和a<1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解.
    【详解】
    解:①a>1时,二次函数图象开口向上,
    ∵|x1﹣2|>|x2﹣2|,
    ∴y1>y2,
    无法确定y1+y2的正负情况,
    a(y1﹣y2)>1,
    ②a<1时,二次函数图象开口向下,
    ∵|x1﹣2|>|x2﹣2|,
    ∴y1<y2,
    无法确定y1+y2的正负情况,
    a(y1﹣y2)>1,
    综上所述,表达式正确的是a(y1﹣y2)>1.
    故选:C.
    【点睛】
    本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论.
    11、C
    【解析】
    解:A.,故本选项错误;
    B.,故本选项错误;
    C.,不能约分,故本选项正确;
    D.,故本选项错误.
    故选C.
    点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.
    12、A
    【解析】
    试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.
    解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
    ∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
    ∴AB=2EF,DC=DF+CF=8,
    作DH⊥BC于H,
    ∵AD∥BC,∠B=90°,
    ∴四边形ABHD为矩形,
    ∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,
    在Rt△DHC中,DH==2,
    ∴EF=DH=.
    故选A.

    点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    试题分析:∵∠BAC=∠ACD=90°,∴AB∥CD.
    ∴△ABE∽△DCE.∴.
    ∵在Rt△ACB中∠B=45°,∴AB=AC.
    ∵在RtACD中,∠D=30°,∴.
    ∴.
    14、1
    【解析】
    连接BD.根据圆周角定理可得.
    【详解】
    解:如图,连接BD.

    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∴∠B=90°﹣∠DAB=1°,
    ∴∠ACD=∠B=1°,
    故答案为1.
    【点睛】
    考核知识点:圆周角定理.理解定义是关键.
    15、1
    【解析】
    【分析】根据根与系数的关系结合x1+x2=x1•x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值.
    【详解】∵x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,
    ∴x1+x2=2k,x1•x2=k2﹣k,
    ∵x12+x22=1,
    ∴(x1+x2)2-2x1x2=1,
    (2k)2﹣2(k2﹣k)=1,
    2k2+2k﹣1=0,
    k2+k﹣2=0,
    k=﹣2或1,
    ∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,
    k≥0,
    ∴k=1,
    ∴x1•x2=k2﹣k=0,
    ∴x12﹣x1x2+x22=1﹣0=1,
    故答案为:1.
    【点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式△≥0”是解题的关键.
    16、-4.
    【解析】
    过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(-4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.
    【详解】
    过点B作BD⊥x轴于点D,

    ∵△AOB是等边三角形,点A的坐标为(﹣4,0),
    ∴∠AOB=60°,OB=OA=AB=4,
    ∴OD= OB=2,BD=OB•sin60°=4×=2,
    ∴B(﹣2,2 ),
    ∴k=﹣2×2 =﹣4.
    【点睛】
    本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.
    17、1.
    【解析】
    试题分析:∵,是方程的两实数根,∴由韦达定理,知,,∴===1,即的值是1.故答案为1.
    考点:根与系数的关系.
    18、
    【解析】
    根据上面的方法,可以令S=1+5+52+53+…+52017,则5S=5+52+53+…+52012+52018,再相减算出S的值即可.
    【详解】
    解:令S=1+5+52+53+…+52017,
    则5S=5+52+53+…+52012+52018,
    5S﹣S=﹣1+52018,
    4S=52018﹣1,
    则S=,
    故答案为:.
    【点睛】
    此题参照例子,采用类比的方法就可以解决,注意这里由于都是5的次方,所以要用5S来达到抵消的目的.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)B'的坐标为(,3);(1)见解析 ;(3)﹣1.
    【解析】
    (1)设A'B'与x轴交于点H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,
    由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;
    (1)证明∠BPA'=90即可;
    (3)作AB的中点M(1,),连接MP,由∠APB=90°,推出点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PM⊥x轴时,点P纵坐标的最小值为﹣1.
    【详解】
    (Ⅰ)如图1,设A'B'与x轴交于点H,

    ∵OA=1,OB=1,∠AOB=90°,
    ∴∠ABO=∠B'=30°,
    ∵∠BOB'=α=30°,
    ∴BO∥A'B',
    ∵OB'=OB=1,
    ∴OH=OB'=,B'H=3,
    ∴点B'的坐标为(,3);
    (Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',
    ∴∠OBB'=∠OA'A=(180°﹣α),
    ∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,
    ∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,
    即AA'⊥BB';

    (Ⅲ)点P纵坐标的最小值为.
    如图,作AB的中点M(1,),连接MP,

    ∵∠APB=90°,
    ∴点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,).
    ∴当PM⊥x轴时,点P纵坐标的最小值为﹣1.
    【点睛】
    本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.
    20、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由见解析(3)
    【解析】
    (1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;
    (2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;
    (3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出当BD的值最大时,PM的值最大,△PMN的面积最大,推出当B、C、D共线时,BD的最大值=BC+CD=6,由此即可解决问题;
    【详解】
    解:(1)PM=PN,PM⊥PN,理由如下:
    延长AE交BD于O,

    ∵△ACB和△ECD是等腰直角三角形,
    ∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
    在△ACE和△BCD中

    ∴△ACE≌△BCD(SAS),
    ∴AE=BD,∠EAC=∠CBD,
    ∵∠EAC+∠AEC=90°,∠AEC=∠BEO,
    ∴∠CBD+∠BEO=90°,
    ∴∠BOE=90°,即AE⊥BD,
    ∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,
    ∴PM=BD,PN=AE,
    ∴PM=PM,
    ∵PM∥BD,PN∥AE,AE⊥BD,
    ∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,
    ∴∠MPA+∠NPC=90°,
    ∴∠MPN=90°,
    即PM⊥PN,
    故答案是:PM=PN,PM⊥PN;
    (2)如图②中,设AE交BC于O,

    ∵△ACB和△ECD是等腰直角三角形,
    ∴AC=BC,EC=CD,
    ∠ACB=∠ECD=90°,
    ∴∠ACB+∠BCE=∠ECD+∠BCE,
    ∴∠ACE=∠BCD,
    ∴△ACE≌△BCD,
    ∴AE=BD,∠CAE=∠CBD,
    又∵∠AOC=∠BOE,
    ∠CAE=∠CBD,
    ∴∠BHO=∠ACO=90°,
    ∵点P、M、N分别为AD、AB、DE的中点,
    ∴PM=BD,PM∥BD,
    PN=AE,PN∥AE,
    ∴PM=PN,
    ∴∠MGE+∠BHA=180°,
    ∴∠MGE=90°,
    ∴∠MPN=90°,
    ∴PM⊥PN;
    (3)由(2)可知△PMN是等腰直角三角形,PM=BD,
    ∴当BD的值最大时,PM的值最大,△PMN的面积最大,
    ∴当B、C、D共线时,BD的最大值=BC+CD=6,
    ∴PM=PN=3,
    ∴△PMN的面积的最大值=×3×3=.
    【点睛】
    本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.
    21、(1)二次函数的关系式为y=;C(1,0);(2)当m=2时,PD+PE有最大值3;(3)点M的坐标为(,)或(,).
    【解析】
    (1)先求出A、B的坐标,然后把A、B的坐标分别代入二次函数的解析式,解方程组即可得到结论;
    (2)先证明△PDE∽△OAB,得到PD=2PE.设P(m,),则E(m,),PD+PE=3PE,然后配方即可得到结论.
    (3)分两种情况讨论:①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.求出圆心O1的坐标和半径,利用MO1=半径即可得到结论.
    ②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.求出点O2的坐标,算出DM的长,即可得到结论.
    【详解】
    解:(1)令y==0,得:x=4,∴A(4,0).
    令x=0,得:y=-2,∴B(0,-2).
    ∵二次函数y=的图像经过A、B两点,
    ∴,解得:,
    ∴二次函数的关系式为y=.
    令y==0,解得:x=1或x=4,∴C(1,0).
    (2)∵PD∥x轴,PE∥y轴,
    ∴∠PDE=∠OAB,∠PED=∠OBA,
    ∴△PDE∽△OAB.∴===2,
    ∴PD=2PE.设P(m,),
    则E(m,).
    ∴PD+PE=3PE=3×[()-()]==.
    ∵0<m<4,∴当m=2时,PD+PE有最大值3.
    (3)①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.
    ∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,-t).
    ∴=,解得:t=2,
    ∴圆心O1的坐标为(,-2),∴半径为.
    设M(,y).∵MO1=,∴,
    解得:y=,∴点M的坐标为().
    ②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.
    ∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB,
    ∴∠O1AB=∠OAB,O2在x轴上,∴点O2的坐标为 (,0),∴O2D=1,
    ∴DM==,∴点M的坐标为(,).
    综上所述:点M的坐标为(,)或(,).

    点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC外接圆的圆心坐标.
    22、(1)50;(2)①6;②1
    【解析】
    试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;
    (2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;
    ②当点P与M重合时,△PBC周长的值最小,于是得到结论.
    试题解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°.故答案为50;
    (2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周长是1,∴BC=1﹣8=6;
    ②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=1.

    23、(1)见解析;(2)
    【解析】
    分析: (1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.
    (2)首先设CD为x,则AB=32x,OC=OB=34x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:ACCB=CDBD,据此求出CB的值是多少,即可求出⊙O半径是多少.
    详解:
    (1)证明:如图,连接CO,

    ∵CD与⊙O相切于点C,
    ∴∠OCD=90°,
    ∵AB是圆O的直径,
    ∴∠ACB=90°,
    ∴∠ACO=∠BCD,
    ∵∠ACO=∠CAD,
    ∴∠CAD=∠BCD,
    在△ADC和△CDB中,

    ∴△ADC∽△CDB.
    (2)解:设CD为x,
    则AB=x,OC=OB=x,
    ∵∠OCD=90°,
    ∴OD===x,
    ∴BD=OD﹣OB=x﹣x=x,
    由(1)知,△ADC∽△CDB,
    ∴=,
    即,
    解得CB=1,
    ∴AB==,
    ∴⊙O半径是.
    点睛: 此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.
    24、(1)证明见解析(2)
    【解析】
    试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
    (2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
    试题解析:(1)证明:因为四边形ABCD是矩形,
    所以AD∥BC,
    所以∠PDO=∠QBO,
    又因为O为BD的中点,
    所以OB=OD,
    在△POD与△QOB中,
    ∠PDO=∠QBO,OB=OD,∠POD=∠QOB,
    所以△POD≌△QOB,
    所以OP=OQ.
    (2)解:PD=8-t,
    因为四边形PBQD是菱形,
    所以PD=BP=8-t,
    因为四边形ABCD是矩形,
    所以∠A=90°,
    在Rt△ABP中,
    由勾股定理得:,
    即,
    解得:t=,
    即运动时间为秒时,四边形PBQD是菱形.
    考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.
    25、(1)证明见解析;(2)1.
    【解析】
    试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;
    (2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.
    试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;
    (2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=×4×8﹣×4×3=1.
    点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.
    26、112.1
    【解析】
    试题分析:(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<11;
    (2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.
    试题解析:解:(1)y=30﹣2x(6≤x<11).
    (2)设矩形苗圃园的面积为S,则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.
    点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.
    27、2
    【解析】
    先根据0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义化简,然后进一步计算即可.
    【详解】
    解:原式=2+2﹣+2
    =2﹣2+2
    =2.
    【点睛】
    本题考查了0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义,熟练掌握各知识点是解答本题的关键.

    相关试卷

    云南省曲靖市沾益区播乐乡罗木中学2023-2024学年九年级数学第一学期期末学业水平测试试题含答案: 这是一份云南省曲靖市沾益区播乐乡罗木中学2023-2024学年九年级数学第一学期期末学业水平测试试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,一元二次方程等内容,欢迎下载使用。

    2023-2024学年云南省曲靖市沾益区播乐乡罗木中学九年级数学第一学期期末统考模拟试题含答案: 这是一份2023-2024学年云南省曲靖市沾益区播乐乡罗木中学九年级数学第一学期期末统考模拟试题含答案,共8页。

    云南省曲靖市沾益区播乐乡罗木中学2023-2024学年数学八上期末达标检测试题含答案: 这是一份云南省曲靖市沾益区播乐乡罗木中学2023-2024学年数学八上期末达标检测试题含答案,共7页。试卷主要包含了下列四种说法,若x>y,则下列式子错误的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map