【备战2023高考】数学考点全复习——第54讲《直线的方程》精选题(新高考专用)
展开第54讲 直线的方程
【基础知识回顾】
1. 当直线l与x轴相交时,把x轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线l的倾斜角,并规定:直线l与x轴平行或重合时倾斜角为0°,因此倾斜角α的范围是0°≤α<180°.
2. 当倾斜角α≠90°时,tanα表示直线l的斜率,常用k表示,即k=tanα.当α=90°时,斜率不存在.当直线过P1(x1,y1),P2(x2,y2)且x1≠x2时,k=.
3. 直线方程的几种形式
名称 | 方程 | 适用范围 |
点斜式 |
|
|
斜截式 |
|
|
两点式 |
|
|
截距式 |
|
|
一般式 |
|
|
1、若过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为( )
A.1 B.4
C.1或3 D.1或4
2、倾斜角为135°,在y轴上的截距为-1的直线方程是( )
A.x-y+1=0 B.x-y-1=0
C.x+y-1=0 D.x+y+1=0
3、过点P(2,3)且在两坐标轴上截距相等的直线方程为________________.
4、(多选)若直线过点A(1,2),且在两坐标轴上截距的绝对值相等,则直线l方程可能为( )
A.x-y+1=0 B.x+y-3=0
C.2x-y=0 D.x-y-1=0
5、(多选)经过点B(3,4),且与两坐标轴围成一个等腰直角三角形的直线方程为( )
A.x-y+1=0 B.x+y-7=0
C.2x-y-2=0 D.2x+y-10=0
考向一 直线的斜率与倾斜角
例1、(徐州一中模拟)(1)直线2xcos α-y-3=0的倾斜角的取值范围是( )
A. B.
C. D.
(2)直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围是__________.
变式1、(2022·安阳模拟)已知点A(1,3),B(-2,-1).若直线l:y=k(x-2)+1与线段AB相交,则k的取值范围是( )
A.k≥ B.k≤-2
C.k≥或k≤-2 D.-2≤k≤
变式2、若直线l的斜率为k,倾斜角为α,且α∈∪,则k的取值范围是________.
变式3、 (1)直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为________.
(2)(2022·宿州模拟)若图中直线l1,l2,l3的斜率分别为k1,k2,k3,则( )
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
方法总结:1. 倾斜角α与斜率k的关系
当α∈且由0增大到时,k的值由0增大到+∞;
当α∈时,k也是关于α的单调函数,当α在此区间内由增大到π(α≠π)时,k的值由-∞增大到趋近于0(k≠0).
2. 斜率的两种求法
(1) 定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k=tanα求斜率.
(2) 公式法:若已知直线上两点A(x1,y1),B(x2,y2),一般根据斜率公式k=(x1≠x2)求斜率.
考向二 直线方程的求法
例2、根据所给条件求直线的方程.
(1)直线过点(-4,0),倾斜角的正弦值为;
(2)直线过点(-3,4),且在两坐标轴上的截距之和为12;
(3)直线过点(5,10),且到原点的距离为5.
变式1、求满足下列条件的直线方程:
(1)经过点A(-5,2),且在x轴上的截距等于在y轴上截距的2倍;
(2)经过点B(3,4),且与两坐标轴围成一个等腰直角三角形.
变式2、 (1)已知一条直线经过点A(2,-),且它的倾斜角等于直线x-y=0倾斜角的2倍,则这条直线的方程为____________________.
(2)过点(2,1)且在x轴上截距与在y轴上截距之和为6的直线方程为______________.
方法总结:本题考查直线方程的几种形式,要注意选择性.过定点,且斜率已知,用直线的点斜式方程;在两坐标轴上的截距已知,一般用截距式,再将点的坐标代入得出直线方程.在求直线方程时,最后结果要化为一般式与斜截式,要当心斜率不存在、截距不存在的特殊情况.
考向三 直线方程的综合应用
例3、 (辽宁阜新实验中学模拟)(1)已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时,直线l1,l2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a的值.
(2)已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A,B两点,如图所示,求△ABO的面积的最小值及此时直线l的方程.
变式1、已知直线l过点M(2,1),且分别与x轴的正半轴、y轴的正半轴交于A,B两点,O为原点,当△AOB面积最小时,求直线l的方程.
变式2、已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线l不经过第四象限,求k的取值范围;
(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程.
方法总结:(1)含有参数的直线方程可看作是直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.
(2)求解与直线方程有关的最值问题时,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.
1、直线l经过点(1,-2),且在两坐标轴上的截距相等,则直线l的方程为( )
A.x-y-1=0或x-2y=0
B.x+y+1=0或x+2y=0
C.x-y+1=0或2x-y=0
D.x+y+1=0或2x+y=0
2、若直线y=ax+c经过第一、二、三象限,则有( )
A.a>0,c>0 B.a>0,c<0
C.a<0,c>0 D.a<0,c<0
3、(2022·衡水模拟)1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,OO1,OO2,OO3,OO4分别是大星中心点与四颗小星中心点的连接线,α≈16°,则第三颗小星的一条边AB所在直线的倾斜角约为( )
A.0° B.1° C.2° D.3°
4、.已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时,直线l1,l2与两坐标轴围成一个四边形,当a=________时,四边形的面积最小,最小值为________.
5、.如图,射线OA,OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA,OB于A,B两点,当AB的中点C恰好落在直线y=x上时,则直线AB的方程是________.
【备战2023高考】数学考点全复习——第64讲《章末检测九》精选题(新高考专用): 这是一份【备战2023高考】数学考点全复习——第64讲《章末检测九》精选题(新高考专用),文件包含备战2023高考数学考点全复习第64讲《章末检测九》精选题解析版docx、备战2023高考数学考点全复习第64讲《章末检测九》精选题原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
【备战2023高考】数学考点全复习——第73讲《统计案例》精选题(新高考专用): 这是一份【备战2023高考】数学考点全复习——第73讲《统计案例》精选题(新高考专用),文件包含备战2023高考数学考点全复习第73讲《统计案例》精选题解析版docx、备战2023高考数学考点全复习第73讲《统计案例》精选题原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
【备战2023高考】数学考点全复习——第72讲《正态分布》精选题(新高考专用): 这是一份【备战2023高考】数学考点全复习——第72讲《正态分布》精选题(新高考专用),文件包含备战2023高考数学考点全复习第72讲《正态分布》精选题解析版docx、备战2023高考数学考点全复习第72讲《正态分布》精选题原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。