天津市津南区咸水沽三中学重点达标名校2021-2022学年中考数学模拟试题含解析
展开
这是一份天津市津南区咸水沽三中学重点达标名校2021-2022学年中考数学模拟试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,四根长度分别为3,4,6,等内容,欢迎下载使用。
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为( )
A.(,-1)B.(2,﹣1)C.(1,-)D.(﹣1,)
2.若函数与y=﹣2x﹣4的图象的交点坐标为(a,b),则的值是( )
A.﹣4B.﹣2C.1D.2
3.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是( )
A.AB=DEB.DF∥ACC.∠E=∠ABCD.AB∥DE
4.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是( )
A.60°B.45°C.15°D.90°
5.四根长度分别为3,4,6,(为正整数)的木棒,从中任取三根.首尾顺次相接都能组成一个三角形,则( ).
A.组成的三角形中周长最小为9B.组成的三角形中周长最小为10
C.组成的三角形中周长最大为19D.组成的三角形中周长最大为16
6.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )
A.B.C.D.
7.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )
A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)
8.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3B.∠2+∠4=180°C.∠1=∠4D.∠3=∠4
9.在函数y=中,自变量x的取值范围是( )
A.x≥1B.x≤1且x≠0C.x≥0且x≠1D.x≠0且x≠1
10.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为( )
A.5.3×103B.5.3×104C.5.3×107D.5.3×108
二、填空题(本大题共6个小题,每小题3分,共18分)
11.比较大小: ___1.(填“>”、“<”或“=”)
12.在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是_________;
13.已知,在同一平面内,∠ABC=50°,AD∥BC,∠BAD的平分线交直线BC于点E,那么∠AEB的度数为__________.
14.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.
15.当x=_________时,分式的值为零.
16.若一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,则是k的值可以是_____.(写出一个即可).
三、解答题(共8题,共72分)
17.(8分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.求双曲线解析式;点P在x轴上,如果△ACP的面积为5,求点P的坐标.
18.(8分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.
(1)求证:;
(2)若△OCP与△PDA的面积比为1:4,求边AB的长.
19.(8分)解方程组: .
20.(8分)关于的一元二次方程有实数根.求的取值范围;如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值.
21.(8分)吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x的取值范围是 .列表:
表中m= ,n= .描点、连线
在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:
观察所画出的函数图象,写出该函数的两条性质:
① ;
② .
22.(10分)为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).
这次调查中,一共调查了________名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.
23.(12分)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.
(1)求证:DE是⊙O的切线;
(2)若AC∥DE,当AB=8,CE=2时,求AC的长.
24.我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体.小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量.测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
作AD⊥y轴于D,作CE⊥y轴于E,则∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性质得出OC=AO,∠1+∠3=90°,证出∠3=∠1,由AAS证明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出结果.
【详解】
解:作AD⊥y轴于D,作CE⊥y轴于E,如图所示:
则∠ADO=∠OEC=90°,∴∠1+∠1=90°.
∵AO=1,AD=1,∴OD=,∴点A的坐标为(1,),∴AD=1,OD=.
∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.
在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴点C的坐标为(,﹣1).
故选A.
【点睛】
本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键.
2、B
【解析】
求出两函数组成的方程组的解,即可得出a、b的值,再代入求值即可.
【详解】
解方程组,
把①代入②得:=﹣2x﹣4,
整理得:x2+2x+1=0,
解得:x=﹣1,
∴y=﹣2,
交点坐标是(﹣1,﹣2),
∴a=﹣1,b=﹣2,
∴=﹣1﹣1=﹣2,
故选B.
【点睛】
本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a、b的值.
3、A
【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.
【详解】
∵EB=CF,
∴EB+BF=CF+BF,即EF=BC,
又∵∠A=∠D,
A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.
B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.
C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.
D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,
故选A.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
4、C
【解析】
试题解析:∵sin∠CAB=
∴∠CAB=45°.
∵,
∴∠C′AB′=60°.
∴∠CAC′=60°-45°=15°,
鱼竿转过的角度是15°.
故选C.
考点:解直角三角形的应用.
5、D
【解析】
首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
【详解】
解:其中的任意三根的组合有3、4、1;3、4、x;3、1、x;4、1、x共四种情况,
由题意:从中任取三根,首尾顺次相接都能组成一个三角形,可得3<x<7,即x=4或5或1.
①当三边为3、4、1时,其周长为3+4+1=13;
②当x=4时,周长最小为3+4+4=11,周长最大为4+1+4=14;
③当x=5时,周长最小为3+4+5=12,周长最大为4+1+5=15;
④若x=1时,周长最小为3+4+1=13,周长最大为4+1+1=11;
综上所述,三角形周长最小为11,最大为11,
故选:D.
【点睛】
本题考查的是三角形三边关系,利用了分类讨论的思想.掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答本题的关键.
6、D
【解析】
根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.
【详解】
解:观察图形可知图案D通过平移后可以得到.
故选D.
【点睛】
本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
7、C
【解析】
【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.
【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,
∴k>0,
A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;
B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;
C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;
D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,
故选C.
【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.
8、D
【解析】
试题分析:A.∵∠1=∠3,∴a∥b,故A正确;
B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;
C. ∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;
D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.
故选D.
考点:平行线的判定.
9、C
【解析】
根据分式和二次根式有意义的条件进行计算即可.
【详解】
由题意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.
故x的取值范围是x≥2且x≠2.
故选C.
【点睛】
本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.
10、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值
相关试卷
这是一份2024年天津市津南区天津市咸水沽第四中学中考一模数学试题(原卷版+解析版),文件包含2024年天津市津南区天津市咸水沽第四中学中考一模数学试题原卷版docx、2024年天津市津南区天津市咸水沽第四中学中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
这是一份天津市天津市津南区天津市咸水沽第四中学2022-2023学年九年级下学期3月月考数学试题(含答案),共13页。试卷主要包含了计算,2sin60°的值等于,估计的值在,计算的结果为,方程组的解是,若点A等内容,欢迎下载使用。
这是一份天津市津南区咸水沽三中2022年中考数学模拟预测试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,cs30°=,如图所示,有一条线段是.等内容,欢迎下载使用。