年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    四川中江县春季联考2022年中考数学最后冲刺模拟试卷含解析

    四川中江县春季联考2022年中考数学最后冲刺模拟试卷含解析第1页
    四川中江县春季联考2022年中考数学最后冲刺模拟试卷含解析第2页
    四川中江县春季联考2022年中考数学最后冲刺模拟试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川中江县春季联考2022年中考数学最后冲刺模拟试卷含解析

    展开

    这是一份四川中江县春季联考2022年中考数学最后冲刺模拟试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法不正确的是,计算﹣1﹣,下列命题中,正确的是,一、单选题,|﹣3|=等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是(  )

    A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)
    C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)
    2.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为(  )
    A.(a﹣20%)元 B.(a+20%)元 C.a元 D. a元
    3.如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是(  )

    A. B. C. D.
    4.在数轴上表示不等式组的解集,正确的是(  )
    A. B.
    C. D.
    5.根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( ).



























    A.只有一个交点 B.有两个交点,且它们分别在轴两侧
    C.有两个交点,且它们均在轴同侧 D.无交点
    6.下列说法不正确的是( )
    A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖
    B.了解一批电视机的使用寿命适合用抽样调查
    C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定
    D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件
    7.计算﹣1﹣(﹣4)的结果为(  )
    A.﹣3 B.3 C.﹣5 D.5
    8.下列命题中,正确的是( )
    A.菱形的对角线相等
    B.平行四边形既是轴对称图形,又是中心对称图形
    C.正方形的对角线不能相等
    D.正方形的对角线相等且互相垂直
    9.一、单选题
    如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为(  )

    A.5 B.4 C.3 D.2
    10.|﹣3|=(  )
    A. B.﹣ C.3 D.﹣3
    二、填空题(共7小题,每小题3分,满分21分)
    11.分解因式:    .
    12.如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l1分别通过A、B、C三点,且l1∥l2∥l1.若l1与l2的距离为5,l2与l1的距离为7,则Rt△ABC的面积为___________

    13.分解因式:_______________.
    14.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上. b =_________,c =_________,点B的坐标为_____________;(直接填写结果)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

    15.如图,点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,OA=4,则k的值为_____.

    16.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为_____.

    17.如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为 .
    三、解答题(共7小题,满分69分)
    18.(10分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.
    (1)求该反比例函数的解析式.
    (2)求S与t的函数关系式;并求当S=时,对应的t值.
    (3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.

    19.(5分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.

    (1)说明四边形ACEF是平行四边形;
    (2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.
    20.(8分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD. 

    (1)求证:CD是⊙O的切线; 
    (2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.
    21.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线DE交AC于点E.

    (1)求证:∠A=∠ADE;
    (2)若AB=25,DE=10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S.(用含字母a的式子表示).
    22.(10分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.

    (1)将上面的条形统计图补充完整;
    (2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?
    (3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?
    23.(12分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:△ACE≌△BCD;若AD=5,BD=12,求DE的长.

    24.(14分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.
    【详解】
    解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;
    B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;
    C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;
    D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.
    故选:A.
    【点睛】
    此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.
    2、C
    【解析】
    根据题意列出代数式,化简即可得到结果.
    【详解】
    根据题意得:a÷(1−20%)=a÷= a(元),
    故答案选:C.
    【点睛】
    本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式.
    3、A
    【解析】
    试题分析:主视图是从正面看到的图形,只有选项A符合要求,故选A.
    考点:简单几何体的三视图.
    4、C
    【解析】
    解不等式组,再将解集在数轴上正确表示出来即可
    【详解】
    解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集为﹣1≤x<2,故选C.
    【点睛】
    本题主要考查了一元一次不等式组的求解,求出题中不等式组的解集是解题的关键.
    5、B
    【解析】
    根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.
    【详解】
    解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上
    则该二次函数的图像与轴有两个交点,且它们分别在轴两侧
    故选B.
    【点睛】
    本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.
    6、A
    【解析】
    试题分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可.
    试题解析:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;
    B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;
    C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;
    D、袋中没有黑球,摸出黑球是不可能事件,故正确.
    故选A.
    考点:1.概率公式;2.全面调查与抽样调查;3.标准差;4.随机事件.
    7、B
    【解析】
    原式利用减法法则变形,计算即可求出值.
    【详解】

    故选:B.
    【点睛】
    本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.
    8、D
    【解析】
    根据菱形,平行四边形,正方形的性质定理判断即可.
    【详解】
    A.菱形的对角线不一定相等, A 错误;
    B.平行四边形不是轴对称图形,是中心对称图形,B 错误;
    C. 正方形的对角线相等,C错误;
    D.正方形的对角线相等且互相垂直,D 正确; 故选:D.
    【点睛】
    本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    9、B
    【解析】
    根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.
    【详解】
    解:∵△ABC绕点A顺时针旋转 60°得到△AED,
    ∴AB=AE,∠BAE=60°,
    ∴△AEB是等边三角形,
    ∴BE=AB,
    ∵AB=1,
    ∴BE=1.
    故选B.
    【点睛】
    本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.
    10、C
    【解析】
    根据绝对值的定义解答即可.
    【详解】
    |-3|=3
    故选:C
    【点睛】
    本题考查的是绝对值,理解绝对值的定义是关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、.
    【解析】
    要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
    先提取公因式后继续应用平方差公式分解即可:.
    考点:提公因式法和应用公式法因式分解.
    12、17
    【解析】

    过点B作EF⊥l2,交l1于E,交l1于F,如 图,
    ∵EF⊥l2,l1∥l2∥l1,
    ∴EF⊥l1⊥l1,
    ∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,
    又∵∠ABC=90°,
    ∴∠ABE+∠FBC=90°,
    ∴∠EAB=∠FBC,
    在△ABE和△BCF中,

    ∴△ABE≌△BCF,
    ∴BE=CF=5,AE=BF=7,
    在Rt△ABE中,AB2=BE2+AE2,
    ∴AB2=74,
    ∴S△ABC=AB⋅BC=AB2=17.
    故答案是17.
    点睛:本题考查了全等三角形的判定和性质、勾股定理、平行线间的距离,三角形的面积公式,解题的关键是做辅助线,构造全等三角形,通过证明三角形全等对应边相等,再利用三角形的面积公式即可得解.
    13、 (x+y)(x-y)
    【解析】
    直接利用平方差公式因式分解即可,即原式=(x+y)(x-y),故答案为(x+y)(x-y).
    14、(1),,(-1,0);(2)存在P的坐标是或;(1)当EF最短时,点P的坐标是:(,)或(,)
    【解析】
    (1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;
    (2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;
    (1)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标.
    【详解】
    解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,
    解得:b=﹣2,c=﹣1,
    ∴抛物线的解析式为.
    ∵令,解得:,,
    ∴点B的坐标为(﹣1,0).
    故答案为﹣2;﹣1;(﹣1,0).
    (2)存在.理由:如图所示:

    ①当∠ACP1=90°.由(1)可知点A的坐标为(1,0).
    设AC的解析式为y=kx﹣1.
    ∵将点A的坐标代入得1k﹣1=0,解得k=1,
    ∴直线AC的解析式为y=x﹣1,
    ∴直线CP1的解析式为y=﹣x﹣1.
    ∵将y=﹣x﹣1与联立解得,(舍去),
    ∴点P1的坐标为(1,﹣4).
    ②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.
    ∵将x=1,y=0代入得:﹣1+b=0,解得b=1,
    ∴直线AP2的解析式为y=﹣x+1.
    ∵将y=﹣x+1与联立解得=﹣2,=1(舍去),
    ∴点P2的坐标为(﹣2,5).
    综上所述,P的坐标是(1,﹣4)或(﹣2,5).
    (1)如图2所示:连接OD.

    由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.
    由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,
    ∴D是AC的中点.
    又∵DF∥OC,
    ∴DF=OC=,
    ∴点P的纵坐标是,
    ∴,解得:x=,
    ∴当EF最短时,点P的坐标是:(,)或(,).
    15、﹣4.
    【解析】
    作AN⊥x轴于N,可设A(x,﹣x),在Rt△OAN中,由勾股定理得出方程,解方程求出x=﹣2,得出A(﹣2,2),即可求出k的值.
    【详解】
    解:作AN⊥x轴于N,如图所示:
    ∵点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,
    ∴可设A(x,﹣x)(x<0),
    在Rt△OAN中,由勾股定理得:x2+(﹣x)2=42,
    解得:x=﹣2,
    ∴A(﹣2,2),
    代入y=得:k=﹣2×2=﹣4;
    故答案为﹣4.

    【点睛】
    本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点A的坐标是解决问题的关键.
    16、36°或37°.
    【解析】
    分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,进而得到∠C的度数.
    详解:如图,过E作EG∥AB,

    ∵AB∥CD,
    ∴GE∥CD,
    ∴∠BAE=∠AEG,∠DFE=∠GEF,
    ∴∠AEF=∠BAE+∠DFE,
    设∠CEF=x,则∠AEC=2x,
    ∴x+2x=∠BAE+60°,
    ∴∠BAE=3x-60°,
    又∵6°<∠BAE<15°,
    ∴6°<3x-60°<15°,
    解得22°<x<25°,
    又∵∠DFE是△CEF的外角,∠C的度数为整数,
    ∴∠C=60°-23°=37°或∠C=60°-24°=36°,
    故答案为:36°或37°.
    点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.
    17、18。
    【解析】
    根据二次函数的性质,抛物线的对称轴为x=3。
    ∵A是抛物线与y轴的交点,点B是这条抛物线上的另一 点,且AB∥x轴。
    ∴A,B关于x=3对称。∴AB=6。
    又∵△ABC是等边三角形,∴以AB为边的等边三角形ABC的周长为6×3=18。

    三、解答题(共7小题,满分69分)
    18、(1)y=(x>0);(2)S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);当S=时,对应的t值为或6;(3)当t=或或3时,使△FBO为等腰三角形.
    【解析】
    (1)由正方形OABC的面积为9,可得点B的坐标为:(3,3),继而可求得该反比例函数的解析式.
    (2)由题意得P(t,),然后分别从当点P1在点B的左侧时,S=t•(-3)=-3t+9与当点P2在点B的右侧时,则S=(t-3)•=9-去分析求解即可求得答案;
    (3)分别从OB=BF,OB=OF,OF=BF去分析求解即可求得答案.
    【详解】
    解:(1)∵正方形OABC的面积为9,
    ∴点B的坐标为:(3,3),
    ∵点B在反比例函数y=(k>0,x>0)的图象上,
    ∴3=,
    即k=9,
    ∴该反比例函数的解析式为:y= y=(x>0);
    (2)根据题意得:P(t,),
    分两种情况:①当点P1在点B的左侧时,S=t•(﹣3)=﹣3t+9(0≤t≤3);
    若S=,
    则﹣3t+9=,
    解得:t=;
    ②当点P2在点B的右侧时,则S=(t﹣3)•=9﹣;
    若S=,则9﹣=,
    解得:t=6;
    ∴S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);
    当S=时,对应的t值为或6;
    (3)存在.
    若OB=BF=3,此时CF=BC=3,
    ∴OF=6,
    ∴6=,
    解得:t=;
    若OB=OF=3,则3=,
    解得:t= ;
    若BF=OF,此时点F与C重合,t=3;
    ∴当t=或或3时,使△FBO为等腰三角形.
    【点睛】
    此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质.此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用.
    19、(1)说明见解析;(2)当∠B=30°时,四边形ACEF是菱形.理由见解析.
    【解析】
    试题分析:(1)证明△AEC≌△EAF,即可得到EF=CA,根据两组对边分别相等的四边形是平行四边形即可判断;
    (2)当∠B=30°时,四边形ACEF是菱形.根据直角三角形的性质,即可证得AC=EC,根据菱形的定义即可判断.
    (1)证明:由题意知∠FDC=∠DCA=90°,
    ∴EF∥CA,
    ∴∠FEA=∠CAE,
    ∵AF=CE=AE,
    ∴∠F=∠FEA=∠CAE=∠ECA.
    在△AEC和△EAF中,

    ∴△EAF≌△AEC(AAS),
    ∴EF=CA,
    ∴四边形ACEF是平行四边形.
    (2)解:当∠B=30°时,四边形ACEF是菱形.
    理由如下:∵∠B=30°,∠ACB=90°,
    ∴AC=AB,
    ∵DE垂直平分BC,
    ∴∠BDE=90°
    ∴∠BDE=∠ACB
    ∴ED∥AC
    又∵BD=DC
    ∴DE是△ABC的中位线,
    ∴E是AB的中点,
    ∴BE=CE=AE,
    又∵AE=CE,
    ∴AE=CE=AB,
    又∵AC=AB,
    ∴AC=CE,
    ∴四边形ACEF是菱形.

    考点:菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定.
    20、(1)证明见解析;(2).
    【解析】
    试题分析:连接OD.根据圆周角定理得到∠ADO+∠ODB=90°,
    而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以证明是切线.
    根据已知条件得到由相似三角形的性质得到 求得 由切线的性质得到根据勾股定理列方程即可得到结论.
    试题解析:(1)连接OD.
    ∵OB=OD,
    ∴∠OBD=∠BDO.
    ∵∠CDA=∠CBD,
    ∴∠CDA=∠ODB.
    又∵AB是⊙O的直径,∴∠ADB=90°,
    ∴∠ADO+∠ODB=90°,
    ∴∠ADO+∠CDA=90°,即∠CDO=90°,
    ∴OD⊥CD.
    ∵OD是⊙O的半径,
    ∴CD是⊙O的切线;

    (2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,

    BC=6,∴CD=4.
    ∵CE,BE是⊙O的切线,
    ∴BE=DE,BE⊥BC,
    ∴BE2+BC2=EC2,
    即BE2+62=(4+BE)2,
    解得BE=.
    21、(1)见解析;(2)75﹣a.
    【解析】
    (1)连接CD,求出∠ADC=90°,根据切线长定理求出DE=EC,即可求出答案;
    (2)连接CD、OD、OE,求出扇形DOC的面积,分别求出△ODE和△OCE的面积,即可求出答案
    【详解】
    (1)证明:连接DC,

    ∵BC是⊙O直径,
    ∴∠BDC=90°,
    ∴∠ADC=90°,
    ∵∠C=90°,BC为直径,
    ∴AC切⊙O于C,
    ∵过点D作⊙O的切线DE交AC于点E,
    ∴DE=CE,
    ∴∠EDC=∠ECD,
    ∵∠ACB=∠ADC=90°,
    ∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,
    ∴∠A=∠ADE;
    (2)解:连接CD、OD、OE,

    ∵DE=10,DE=CE,
    ∴CE=10,
    ∵∠A=∠ADE,
    ∴AE=DE=10,
    ∴AC=20,
    ∵∠ACB=90°,AB=25,
    ∴由勾股定理得:BC===15,
    ∴CO=OD=,
    ∵的长度是a,
    ∴扇形DOC的面积是×a×=a,
    ∴DE、EC和弧DC围成的部分的面积S=××10+×10﹣a=75﹣a.
    【点睛】
    本题考查了圆周角定理,切线的性质,切线长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键.
    22、(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.
    【解析】
    (1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;
    (2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;
    (3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案.
    【详解】
    解:(1)本次调查共抽取的学生有(名)
    选择“友善”的人数有(名)
    ∴条形统计图如图所示:

    (2)∵选择“爱国”主题所对应的百分比为,
    ∴选择“爱国”主题所对应的圆心角是;
    (3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有名.
    故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.
    【点睛】
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    23、(1)证明见解析(2)13
    【解析】
    (1)先根据同角的余角相等得到∠ACE=∠BCD,再结合等腰直角三角形的性质即可证得结论;
    (2)根据全等三角形的性质可得AE=BD,∠EAC=∠B=45°,即可证得△AED是直角三角形,再利用勾股定理即可求出DE的长.
    【详解】
    (1)∵△ACB和△ECD都是等腰直角三角形
    ∴AC=BC,EC=DC,∠ACB=∠ECD=90°
    ∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA
    ∴∠ACE=∠BCD
    ∴△ACE≌△BCD(SAS);
    (2)∵△ACB和△ECD都是等腰直角三角形
    ∴∠BAC=∠B=45°
    ∵△ACE≌△BCD
    ∴AE=BD=12,∠EAC=∠B=45°
    ∴∠EAD=∠EAC+∠BAC=90°,
    ∴△EAD是直角三角形

    【点睛】
    解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.
    24、(1)50;(2)16;(3)56(4)见解析
    【解析】
    (1)用A等级的频数除以它所占的百分比即可得到样本容量;
    (2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;
    (4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.
    【详解】
    (1)10÷20%=50(名)
    答:本次抽样调查共抽取了50名学生.
    (2)50-10-20-4=16(名)
    答:测试结果为C等级的学生有16名.
    图形统计图补充完整如下图所示:

    (3)700×=56(名)
    答:估计该中学八年级学生中体能测试结果为D等级的学生有56名.
    (4)画树状图为:

    共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,
    所以抽取的两人恰好都是男生的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.

    相关试卷

    四川省德阳中江县联考2022年中考冲刺卷数学试题含解析:

    这是一份四川省德阳中江县联考2022年中考冲刺卷数学试题含解析,共25页。试卷主要包含了计算,一、单选题,某校八等内容,欢迎下载使用。

    甘肃省陇南徽县联考2022年中考数学最后冲刺模拟试卷含解析:

    这是一份甘肃省陇南徽县联考2022年中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列运算结果是无理数的是等内容,欢迎下载使用。

    2022年四川省成都七中中考数学最后冲刺模拟试卷含解析:

    这是一份2022年四川省成都七中中考数学最后冲刺模拟试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map