终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    (新高考)高考数学一轮复习学案10.4《随机事件的概率与古典概型》(含详解)

    立即下载
    加入资料篮
    (新高考)高考数学一轮复习学案10.4《随机事件的概率与古典概型》(含详解)第1页
    (新高考)高考数学一轮复习学案10.4《随机事件的概率与古典概型》(含详解)第2页
    (新高考)高考数学一轮复习学案10.4《随机事件的概率与古典概型》(含详解)第3页
    还剩14页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (新高考)高考数学一轮复习学案10.4《随机事件的概率与古典概型》(含详解)

    展开

    这是一份(新高考)高考数学一轮复习学案10.4《随机事件的概率与古典概型》(含详解),共17页。学案主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
    第4讲 随机事件的概率与古典概型


    一、知识梳理
    1.概率与频率
    (1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.
    (2)对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).
    2.事件的关系与运算

    定义
    符号表示
    包含关系
    如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)
    B⊇A
    (或A⊆B)
    相等关系
    若B⊇A且A⊇B,那么称事件A与事件B相等
    A=B
    并事件
    (和事件)
    若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)
    A∪B
    (或A+B)
    交事件
    (积事件)
    若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)
    A∩B
    (或AB)
    互斥事件
    若A∩B为不可能事件,那么称事件A与事件B互斥
    A∩B=∅
    对立事件
    若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件
    A∩B=∅
    且A∪B=Ω
    3.古典概型
    (1)基本事件的特点
    ①任何两个基本事件是互斥的;
    ②任何事件(除不可能事件)都可以表示成基本事件的和.
    (2)特点
    ①试验中所有可能出现的基本事件只有有限个,即有限性.
    ②每个基本事件发生的可能性相等,即等可能性.
    (3)概率公式
    P(A)=.
    4.对古典概型的理解
    (1)一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.正确判断试验的类型是解决概率问题的关键.
    (2)古典概型是一种特殊的概率模型,但并不是所有的试验都是古典概型.
    常用结论
    概率的几个基本性质
    (1)概率的取值范围:0≤P(A)≤1.
    (2)必然事件的概率:P(A)=1.
    (3)不可能事件的概率:P(A)=0.
    (4)概率的加法公式
    如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).
    (5)对立事件的概率
    若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=1,P(A)=1-P(B).
    二、教材衍化
    1.袋中装有3个白球,4个黑球,从中任取3个球,则
    ①恰有1个白球和全是白球;
    ②至少有1个白球和全是黑球;
    ③至少有1个白球和至少有2个白球;
    ④至少有1个白球和至少有1个黑球.
    在上述事件中,是互斥事件但不是对立事件的为________.
    答案:①
    2.容量为20的样本数据,分组后的频数如下表:
    分组
    [10,20)
    [20,30)
    [30,40)
    [40,50)
    [50,60)
    [60,70)
    频数
    2
    3
    4
    5
    4
    2
    则样本数据落在区间[10,40)的频率为________.
    答案:0.45
    3.袋中装有6个白球, 5个黄球,4个红球.从中任取一球,则取到白球的概率为________.
    解析:从袋中任取一球,有15种取法,其中取到白球的取法有6种,则所求概率为P==.
    答案:
    4.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为________.
    解析:从5件产品中任取2件共有C=10(种)取法,恰有一件次品的取法有CC=6(种),所以恰有一件次品的概率为=0.6.
    答案:0.6

    一、思考辨析
    判断正误(正确的打“√”,错误的打“×”)
    (1)事件发生的频率与概率是相同的.(  )
    (2)随机事件和随机试验是一回事.(  )
    (3)在大量重复试验中,概率是频率的稳定值.(  )
    (4)两个事件的和事件发生是指这两个事件至少有一个发生.(  )
    (5)若A,B为互斥事件,则P(A)+P(B)=1.(  )
    (6)在一次试验中,其基本事件的发生一定是等可能的.(  )
    答案:(1)× (2)× (3)√ (4)√ (5)× (6)×
    二、易错纠偏
    (1)确定互斥事件、对立事件出错;
    (2)基本事件计数错误.
    1.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为________.
    解析:由题意得,甲不输的概率为+=.
    答案:
    2.掷一个骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+发生的概率为________.
    解析:掷一个骰子的试验有6种可能结果,依题意P(A)==,P(B)==,所以P()=1-P(B)=1-=,显然A与互斥,从而P(A+)=P(A)+P()=+=.
    答案:
    3.已知函数f(x)=2x2-4ax+2b2,若a∈{4,6,8},b∈{3,5,7},则该函数有两个零点的概率为________.
    解析:要使函数f(x)=2x2-4ax+2b2有两个零点,即方程x2-2ax+b2=0有两个实根,则Δ=4a2-4b2>0,又a∈{4,6,8},b∈{3,5,7},即a>b,而a,b的取法共有3×3=9(种),其中满足a>b的取法有(4,3),(6,3),(6,5),(8,3),(8,5),(8,7),共6种,所以所求的概率为=.
    答案:

    考点一 随机事件的频率与概率(基础型)
    在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别.
    核心素养:数学抽象、数据分析
    某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如表所示:

    X
    1
    2
    3
    4
    Y
    51
    48
    45
    42
    这里,两株作物“相近”是指它们之间的直线距离不超过1米.
    (1)完成下表,并求所种作物的平均年均收获量;
    Y
    51
    48
    45
    42
    频数

    4


    (2)在所种作物中随机选取一株,求它的年收获量至少为48 kg的概率.
    【解】 (1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株,列表如下:
    Y
    51
    48
    45
    42
    频数
    2
    4
    6
    3
    所种作物的平均年收获量为==46.
    (2)由(1)知,P(Y=51)=,P(Y=48)=.
    故在所种作物中随机选取一株,它的年收获量至少为48 kg的概率为
    P(Y≥48)=P(Y=51)+P(Y=48)=+=.

     
     某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.
    (1)完成频率分布表;
    近20年六月份降雨量频率分布表
    降雨量
    70
    110
    140
    160
    200
    220
    频率






    (2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490万千瓦时或超过530万千瓦时的概率.
    解:(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为
    降雨量
    70
    110
    140
    160
    200
    220
    频率






    (2)由已知可得Y=+425,
    故P(“发电量低于490万千瓦时或超过530万千瓦时”)
    =P(Y<490或Y>530)=P(X<130或X>210)
    =P(X=70)+P(X=110)+P(X=220)
    =++=.故今年六月份该水力发电站的发电量低于490万千瓦时或超过530万千瓦时的概率为.
    考点二 互斥事件、对立事件的概率(基础型)
    通过实例,了解两个互斥事件的概率加法公式.
    核心素养:数学建模
    某商场有奖销售中,购满100元商品得1张奖券,多购多得,1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.记1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
    (1)1张奖券的中奖概率;
    (2)1张奖券不中特等奖且不中一等奖的概率.
    【解】 (1)设“1张奖券中奖”为事件M,则M=A∪B∪C,依题意,P(A)=,P(B)==,P(C)==,因为A,B,C两两互斥,
    所以P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)==,
    故1张奖券的中奖概率为.
    (2)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,所以P(N)=1-P(A∪B)
    =1-=.
    故1张奖券不中特等奖且不中一等奖的概率为.

    求复杂互斥事件的概率的两种方法
    (1)直接法

    (2)间接法(正难则反,特别是“至多”“至少”型题目,用间接法求解简单)
     

    1.某人去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4.则他乘火车或乘飞机去的概率为________.
    解析:设此人乘火车、轮船、汽车、飞机去开会分别用事件A,B,C,D表示,则事件A,B,C,D是互斥事件,P(A∪D)=P(A)+P(D)=0.3+0.4=0.7,所以他乘火车或乘飞机去的概率为0.7.
    答案:0.7
    2.(一题多解)经统计,在某储蓄所一个营业窗口排队的人数相应的概率如下:
    排队人数
    0
    1
    2
    3
    4
    5人及5人以上
    概率
    0.1
    0.16
    0.3
    0.3
    0.1
    0.04
    求:(1)至多2人排队等候的概率;
    (2)至少3人排队等候的概率.
    解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A、B、C、D、E、F彼此互斥.
    (1)记“至多2人排队等候”为事件G,则G=A+B+C,所以P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.
    (2)法一:记“至少3人排队等候”为事件H,则H=D+E+F,所以P(H)=P(D+E+F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.
    法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.
    考点三 古典概型的概率(应用型)
    通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.
    核心素养:数学建模、数学运算
    角度一 简单的古典概型的概率
    (1)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是(  )
    A.          B.
    C. D.
    (2)将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,则每个小组恰好有1名教师和1名学生的概率为(  )
    A. B.
    C. D.
    【解析】 (1)不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有C种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率P==,故选C.
    (2)将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,基本事件总数n=CCC=90,每个小组恰好有1名教师和1名学生包含的基本事件个数m=CCCCCC=36,所以每个小组恰好有1名教师和1名学生的概率为P===.故选B.
    【答案】 (1)C (2)B

    (1)古典概型中基本事件的探求方法

    (2)利用公式法求解古典概型问题的步骤
     
    角度二 古典概型与其他知识的综合问题
    (1)从集合{2,3,4,5}中随机抽取一个数a,从集合{1,3,5}中随机抽取一个数b,则向量m=(a,b)与向量n=(1,-1)垂直的概率为(  )
    A. B.
    C. D.
    (2)已知a∈{-2,0,1,2,3},b∈{3,5},则函数f(x)=(a2-2)ex+b为减函数的概率是(  )
    A. B.
    C. D.
    (3)将一个骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设任意投掷两次使两条不重合直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,若点(P1,P2)在圆(x-m)2+y2=的内部,则实数m的取值范围是(  )
    A.       B.
    C. D.
    【解析】 (1)由题意可知m=(a,b)有:(2,1),(2,3),(2,5),(3,1),(3,3),(3,5),(4,1),(4,3),(4,5),(5,1),(5,3),(5,5),共12种情况.
    因为m⊥n,即m·n=0,
    所以a×1+b×(-1)=0,即a=b,
    满足条件的有(3,3),(5,5)共2个,
    故所求的概率为.故选A.
    (2)函数f(x)=(a2-2)ex+b为减函数,则a2-2<0,又a∈{-2,0,1,2,3},故只有a=0,a=1满足题意,又b∈{3,5},所以函数f(x)=(a2-2)ex+b为减函数的概率是=.故选C.
    (3)对于a与b各有6种情形,故总数为36种.
    两条直线l1:ax+by=2,l2:x+2y=2平行的情形有a=2,b=4或a=3,b=6,故概率为P1==,两条直线l1:ax+by=2,l2:x+2y=2相交的情形除平行与重合(a=1,b=2)即可,所以P2==,
    因为点(P1,P2)在圆(x-m)2+y2=的内部,
    所以+<,
    解得-<m<,故选D.
    【答案】 (1)A (2)C (3)D

    解决古典概型中交汇问题的方法
    解决与古典概型交汇的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算. 

    1.(2019·高考全国卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是(  )

    A. B.
    C. D.
    解析:选A.由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为C==20.根据古典概型的概率计算公式得,所求概率P==.故选A.
    2.2021年广东新高考将实行3+1+2模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率为(  )
    A. B.
    C. D.
    解析:选D.由题意,从政治、地理、化学、生物中四选二,共有C=6(种)方法,所以他们选课相同的概率为,故选D.
    3.2019年1月1日,济南轨道交通1号线试运行,济南轨道交通集团面向广大市民开展“参观体验,征求意见”的活动.市民可以通过济南地铁APP抢票,小陈抢到了三张体验票,准备从四位朋友小王、小张、小刘、小李中随机选择两位与自己一起去参加体验活动,则小王和小李至多一人被选中的概率为________.
    解析:法一:若小王和小李都没被选中,则有C种方法,若小王和小李有一人被选中,则有CC种方法,故所求概率P==.
    法二:若小王和小李都被选中,则有1种方法,故所求概率P=1-=.
    答案:

    [基础题组练]
    1.(多选)下列4个命题错误的是(  )
    A.对立事件一定是互斥事件
    B.若A,B为两个事件,则P(A+B)=P(A)+P(B)
    C.若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1
    D.若事件A,B满足P(A)+P(B)=1,则A,B是对立事件
    解析:选BCD.在A中,对立事件一定是互斥事件,故A正确;在B中,若A,B为两个互斥事件,则P(A+B)=P(A)+P(B),若A,B不是互斥事件,则P(A+B)=P(A)+P(B)-P(AB),故B错误;在C中,若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)≤1,故C错误;在D中,若事件A,B满足P(A)+P(B)=1,则A,B有可能不是对立事件.
    2.(2019·高考全国卷Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为(  )
    A.0.5          B.0.6
    C.0.7 D.0.8
    解析:选C.根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:

    所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7.
    3.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为(  )
    A. B.
    C. D.
    解析:选C.将5张奖票不放回地依次取出共有A=120种不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票,共有3AAA=36种取法,所以P==.故选C.
    4.(多选)某展会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计了两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则(  )
    A.P1·P2= B.P1=P2=
    C.P1+P2= D.P1>P2
    解析:选ACD.三辆车的出车顺序可能为123,132,213,231,312,321,共6种.方案一坐到“3号”车可能为132,213,231,共3种,所以P1==;方案二坐到“3号”车可能为312,321,共2种,所以P2==,所以P1>P2,P1·P2=,P1+P2=,故选ACD.
    5.(2020·武汉市调研测试)大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为(  )
    A. B.
    C. D.
    解析:选C.依题意,小明与另外3名大学生分配到某乡镇甲、乙、丙3个村小学的分配方法是1个学校2人,另外2个学校各1人,共有CA=36(种)分配方法,若小明必分配到甲村小学,有CA+CA=12(种)分配方法,根据古典概型的概率计算公式得所求的概率为=,故选C.
    6.(2019·高考全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.
    解析:经停该站高铁列车所有车次的平均正点率的估计值为=0.98.
    答案:0.98
    7.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.“恰好3枚正面都朝上”的概率是________;“至少有2枚反面朝上”的概率是________.
    解析:列举基本事件如下:(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反),共8个,“恰好3枚正面都朝上”包含1个基本事件,概率P1=.“至少有2枚反面朝上”包含4个基本事件,概率P2==.
    答案: 
    8.已知|p|≤3,|q|≤3,当p,q∈Z,则方程x2+2px-q2+1=0有两个相异实数根的概率是________.

    解析:由方程x2+2px-q2+1=0有两个相异实数根,可得Δ=(2p)2-4(-q2+1)>0,即p2+q2>1.
    当p,q∈Z时,设点M(p,q),如图,直线p=-3,-2,-1,0,1,2,3和直线q=-3,-2,-1,0,1,2,3的交点,即为点M,共有49个,其中在圆上和圆内的点共有5个(图中黑点).当点M(p,q)落在圆p2+q2=1外时,方程x2+2px-q2+1=0有两个相异实数根,所以方程x2+2px-q2+1=0有两个相异实数根的概率P==.
    答案:
    9.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
    赔付金额(元)
    0
    1 000
    2 000
    3 000
    4 000
    车辆数(辆)
    500
    130
    100
    150
    120
    (1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;
    (2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.
    解:(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得
    P(A)==0.15,P(B)==0.12.
    由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.
    (2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为=0.24,由频率估计概率得P(C)=0.24.
    10.在某大型活动中,甲、乙等五名志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
    (1)求甲、乙两人同时参加A岗位服务的概率;
    (2)求甲、乙两人不在同一个岗位服务的概率;
    (3)求五名志愿者中仅有一人参加A岗位服务的概率.
    解:(1)记“甲、乙两人同时参加A岗位服务”为事件EA,那么P(EA)==,即甲、乙两人同时参加A岗位服务的概率是.
    (2)记“甲、乙两人同时参加同一岗位服务”为事件E,那么P(E)==,所以甲、乙两人不在同一岗位服务的概率是P()=1-P(E)=.
    (3)有两人同时参加A岗位服务的概率P2==,所以仅有一人参加A岗位服务的概率P1=1-P2=.
    [综合题组练]
    1.已知甲、乙、丙各有一张自己的身份证,现把三张身份证收起来后,再随机分给甲、乙、丙每人一张,则恰有一人取到自己身份证的概率为(  )
    A. B.
    C. D.
    解析:选A.甲、乙、丙各有一张自己的身份证,
    现把三张身份证收起来后,再随机分给甲、乙、丙每人一张,
    基本事件总数n=A=6,
    恰有一人取到自己身份证包含的基本事件个数m=CCC=3,
    所以恰有一人取到自己身份证的概率为p===.故选A.
    2.如图,某建筑工地搭建的脚手架局部类似于一个2×2×3的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为(  )

    A. B.
    C. D.
    解析:选B.根据题意,最近路线就是不能走回头路,不能走重复的路,所以一共要走3次向上,2次向右,2次向前,共7次,所以最近的行走路线共有A=5 040(种).因为不能连续向上,所以先把不向上的次数排列起来,也就是2次向右和2次向前全排列为A.接下来,就是把3次向上插到4次不向上之间的空隙中,5个位置排3个元素,也就是A,则最近的行走路线中不连续向上攀登的路线共有AA=1 440(种),所以其最近的行走路线中不连续向上攀登的概率P==.故选B.
    3.连续抛掷同一颗均匀的骰子,记第i次得到的向上一面的点数为ai,若存在正整数k,使a1+a2+…+ak=6,则称k为幸运数字,则幸运数字为3的概率是________.
    解析:连续抛掷同一颗均匀的骰子3次,所含基本事件总数n=6×6×6,要使a1+a2+a3=6,则a1,a2,a3可取1,2,3或1,1,4或2,2,2三种情况,其所含的基本事件个数m=A+C+1=10.
    故幸运数字为3的概率为P==.
    答案:
    4.如图的三行三列的方阵中有九个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率为________.

    解析:从九个数中任取三个数的不同取法共有C==84种,取出的三个数分别位于不同的行与列的取法共有C·C·C=6种,所以至少有两个数位于同行或同列的概率为1-=.
    答案:
    5.某电子商务公司随机抽取1 000名网络购物者进行调查.这1 000名购物者2017年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为:[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:

    电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:
    购物金额分组
    [0.3,0.5)
    [0.5,0.6)
    [0.6,0.8)
    [0.8,0.9]
    发放金额
    50
    100
    150
    200
    (1)求这1 000名购物者获得优惠券金额的平均数;
    (2)以这1 000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.
    解:(1)购物者的购物金额x与获得优惠券金额y的频率分布如下表:
    x
    0.3≤x<0.5
    0.5≤x<0.6
    0.6≤x<0.8
    0.8≤x≤0.9
    y
    50
    100
    150
    200
    频率
    0.4
    0.3
    0.28
    0.02
    这1 000名购物者获得优惠券金额的平均数为
    (50×400+100×300+150×280+200×20)=96.
    (2)由获得优惠券金额y与购物金额x的对应关系及(1)知,
    P(y=150)=P(0.6≤x<0.8)=0.28,
    P(y=200)=P(0.8≤x≤0.9)=0.02,
    从而,获得优惠券金额不少于150元的概率为P(y≥150)=P(y=150)+P(y=200)=0.28+0.02=0.3.
    6.(2020·太原一模)某快递公司收取快递费用的标准如下:质量不超过1 kg的包裹收费10元;质量超过1 kg的包裹,除1 kg收费10元之外,超过1 kg的部分,每1 kg(不足1 kg,按1 kg计算)需再收5元.
    该公司对近60天,每天揽件数量统计如下表:
    包裹件数范围
    0~100
    101~200
    201~300
    301~400
    401~500
    包裹件数(近似处理)
    50
    150
    250
    350
    450
    天数
    6
    6
    30
    12
    6
    (1)某人打算将A(0.3 kg),B(1.8 kg),C(1.5 kg)三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过30元的概率;
    (2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过150件,工资100元,目前前台有工作人员3人,那么公司将前台工作人员裁员1人对提高公司利润是否更有利?
    解:(1)由题意,寄出方式有以下三种可能:
    情况
    第一个包裹
    第二个包裹
    甲支付的
    总快递费
    礼物
    质量(kg)
    快递费(元)
    礼物
    质量(kg)
    快递费(元)
    1
    A
    0.3
    10
    B,C
    3.3
    25
    35
    2
    B
    1.8
    15
    A,C
    1.8
    15
    30
    3
    C
    1.5
    15
    A,B
    2.1
    20
    35
    所有3种可能中,有1种可能快递费未超过30元,根据古典概型概率计算公式,所求概率为.
    (2)由题目中的天数得出频率,如下:
    包裹件数范围
    0~100
    101~200
    201~300
    301~400
    401~500
    包裹件数(近似处理)
    50
    150
    250
    350
    450
    天数
    6
    6
    30
    12
    6
    频率
    0.1
    0.1
    0.5
    0.2
    0.1
    若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:
    包裹件数(近似处理)
    50
    150
    250
    350
    450
    实际揽件数
    50
    150
    250
    350
    450
    频率
    0.1
    0.1
    0.5
    0.2
    0.1
    平均揽件数
    50×0.1+150×0.1+250×0.5+350×0.2+450×0.1=260
    故公司每日利润为260×5-3×100=1 000(元);
    若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:
    包裹件数(近似处理)
    50
    150
    250
    350
    450
    实际揽件数
    50
    150
    250
    300
    300
    频率
    0.1
    0.1
    0.5
    0.2
    0.1
    平均揽件数
    50×0.1+150×0.1+250×0.5+300×0.2+300×0.1=235
    故公司每日利润为235×5-2×100=975(元).
    综上,公司将前台工作人员裁员1人对提高公司利润不利.

    相关学案

    (新高考)高考数学一轮复习学案9.6《双曲线》(含详解):

    这是一份(新高考)高考数学一轮复习学案9.6《双曲线》(含详解),共17页。学案主要包含了知识梳理,教材衍化等内容,欢迎下载使用。

    (新高考)高考数学一轮复习学案9.3《圆的方程》(含详解):

    这是一份(新高考)高考数学一轮复习学案9.3《圆的方程》(含详解),共13页。学案主要包含了知识梳理,教材衍化等内容,欢迎下载使用。

    (新高考)高考数学一轮复习学案7.4《数列求和》(含详解):

    这是一份(新高考)高考数学一轮复习学案7.4《数列求和》(含详解),共11页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map