终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    (新高考)高考数学一轮复习课时练习5.5《函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用》(含解析)

    立即下载
    加入资料篮
    (新高考)高考数学一轮复习课时练习5.5《函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用》(含解析)第1页
    (新高考)高考数学一轮复习课时练习5.5《函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用》(含解析)第2页
    (新高考)高考数学一轮复习课时练习5.5《函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用》(含解析)第3页
    还剩21页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (新高考)高考数学一轮复习课时练习5.5《函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用》(含解析)

    展开

    这是一份(新高考)高考数学一轮复习课时练习5.5《函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用》(含解析),共24页。试卷主要包含了y=Asin的有关概念等内容,欢迎下载使用。
    第5讲 函数y=Asin(ωx+φ)的图象及
    三角函数模型的简单应用
    最新考纲
    考向预测
    1.了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响.
    2.了解三角函数是描述周期变化现象的重要函数模型,会利用三角函数模型解决一些简单的实际问题.
    命题趋势
    y=Asin(ωx+φ)的图象、图象变换以及由图象求解析式,尤其是y=Asin(ωx+φ)的图象与性质的综合应用是考查的热点,题型多以选择题为主,难度中等.
    核心素养
    直观想象、数学建模


    1.y=Asin(ωx+φ)的有关概念
    y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示一个振动量时
    振幅
    周期
    频率
    相位
    初相
    初相
    A
    T=
    f==
    ωx+φ
    φ
    φ
    2.用五点法画y=Asin(ωx+φ)一个周期内的简图
    用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示:
    x





    ωx+φ
    0

    π


    y=Asin(ωx+φ)
    0
    A
    0
    -A
    0
    3.三角函数图象变换的两种方法(ω>0)

    常用结论
    (1)对称中心与零点相联系,对称轴与最值点相联系.y=Asin(ωx+φ)的图象有无数条对称轴,可由方程ωx+φ=kπ+(k∈Z)解出;它还有无数个对称中心,即图象与x轴的交点,可由ωx+φ=kπ(k∈Z)解出.
    (2)相邻两条对称轴间的距离为,相邻两对称中心间的距离也为,函数的对称轴一定经过图象的最高点或最低点.
    常见误区
    (1)函数y=Asin(ωx+φ)+k图象平移的规律:“左加右减,上加下减”.
    (2)由y=sin ωx到y=sin(ωx+φ)(ω>0,φ>0)的变换:向左平移个单位长度而非φ个单位长度.

    1.判断正误(正确的打“√”,错误的打“×”)
    (1)把y=sin x的图象上各点的横坐标缩短为原来的,纵坐标不变,所得图象对应的函数解析式为y=sin x.(  )
    (2)将y=sin 2x的图象向右平移个单位长度,得到y=sin的图象.(  )
    (3)函数f(x)=Asin(ωx+φ)(A≠0)的最大值为A,最小值为-A.(  )
    (4)如果y=Acos(ωx+φ)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.(  )
    (5)若函数y=Asin(ωx+φ)为偶函数,则φ=2kπ+(k∈Z).(  )
    答案:(1)× (2)× (3)× (4)√ (5)×
    2.为了得到y=3cos的图象,只需把y=3cos图象上的所有点的(  )
    A.纵坐标伸长到原来的3倍,横坐标不变
    B.横坐标伸长到原来的3倍,纵坐标不变
    C.纵坐标缩短到原来的,横坐标不变
    D.横坐标缩短到原来的,纵坐标不变
    解析:选D.因为变换前后,两个函数的初相相同,所以只需把y=3cos图象上的所有点的纵坐标不变,横坐标缩短到原来的,即可得到函数y=3cos的图象.
    3.(易错题)要得到函数y=sin的图象,只需将函数y=sin 4x的图象(  )
    A.向左平移个单位长度 B.向右平移个单位长度
    C.向左平移个单位长度 D.向右平移个单位长度
    解析:选A.因为y=sin=sin,
    所以要得到函数y=sin的图象,只需将函数y=sin 4x的图象向左平移个单位长度.
    4.若将函数y=2sin 2x的图象向左平移个单位长度,则得到的图象对应的函数表达式为f(x)=________.
    解析:函数y=2sin 2x的图象向左平移个单位长度,得到的图象对应的函数表达式为f(x)=2sin =2sin.
    答案:2sin
    5.已知函数f(x)=2sin(ωx+φ)的部分图象如图所示,则f(x)=________.

    解析:设f(x)的最小正周期为T,
    根据题图可知,=,
    所以T=π,故ω=2,
    根据2sin=0(增区间上的零点)可知,+φ=2kπ,k∈Z,
    即φ=2kπ-,k∈Z,
    又|φ|<,故φ=-.
    所以f(x)=2sin.
    答案:2sin


          五点法作图及图象变换
    已知函数f(x)=sin 2x+2cos2x+a,其最大值为2.
    (1)求a的值及f(x)的最小正周期;
    (2)画出f(x)在[0,π]上的图象.
    【解】 (1)f(x)=sin 2x+2cos2x+a
    =sin 2x+cos 2x+1+a
    =2sin+1+a的最大值为2,
    所以a=-1,最小正周期T==π.
    (2)由(1)知f(x)=2sin,列表:
    x
    0




    π
    2x+


    π



    f(x)=2sin
    1
    2
    0
    -2
    0
    1
    画图如下.

    【引申探究】
    1.(变问法)若将本例中函数f(x)的图象向左平移个单位长度,把所有点的横坐标伸长到原来的二倍(纵坐标不变),得到函数g(x)的图象,则g(x)=________.
    解析:f(x)的图象向左平移个单位长度后得
    y=2sin=2sin的图象,
    再把所有点的横坐标伸长到原来的二倍(纵坐标不变)得
    g(x)=2sin的图象,
    即g(x)=2sin.
    答案:2sin
    2.(变问法)在本例条件下,函数y=2cos 2x的图象向右平移________个单位得到y=f(x)的图象.
    解析:将函数y=2cos 2x的图象向右平移个单位长度,可得函数y=2sin 2x的图象,再将y=2sin 2x的图象向左平移个单位长度,可得函数y=2sin(2x+)的图象,综上可得,函数y=2sin的图象可以由函数y=2cos 2x的图象向右平移个单位长度得到.
    答案:

    函数y=Asin(ωx+φ)(A>0,ω>0)
    的图象的两种作法
    五点法
    设z=ωx+φ,由z取0,,π,π,2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象
    图象变
    换法
    由函数y=sin x的图象通过变换得到y=Asin(ωx+φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”
    [注意] 平移变换和伸缩变换都是针对x而言,即x本身加减多少值,而不是ωx加减多少值. 

    1.函数y=sin的图象向左平移φ个单位长度,得到的函数是偶函数,则φ的最小正值是(  )
    A.          B.
    C. D.
    解析:选A.函数y=sin向左平移φ个单位长度可得y=sin,
    因为y=sin是偶函数,
    所以2φ+=+kπ,k∈Z,φ=+,k∈Z,
    由k=0可得φ的最小正值是.
    2.(多选)分别对函数y=sin x的图象进行如下变换:①先向左平移个单位长度,然后将其上各点的横坐标缩短到原来的倍,得到y=f(x)的图象;②先将其上各点的横坐标缩短到原来的倍,然后向左平移个单位长度,得到y=g(x)的图象.则以下结论正确的是(  )
    A.f(x)与g(x)的图象重合
    B.为f(x)图象的一个对称中心
    C.直线x=-为函数g(x)图象的一条对称轴
    D.f(x)的图象向左平移个单位长度可得g(x)的图象
    解析:选BCD.①将y=sin x的图象向左平移个单位长度得到y=sin的图象,再将y=sin的图象上各点的横坐标缩短到原来的倍,得到f(x)=sin的图象;②将y=sin x的图象上各点的横坐标缩短到原来的倍,得到y=sin 2x的图象,再将其图象向左平移个单位长度,得到g(x)=sin=sin的图象.故选项A不正确.令2x+=kπ(k∈Z),得x=π-(k∈Z),令k=1,则可知选项B正确;令2x+=kπ+(k∈Z),得x=+(k∈Z),令k=-1,则可知选项C正确.又g(x)=sin=sin=f,所以f(x)的图象向左平移个单位长度可得g(x)的图象,故选项D正确,故选BCD.

          求y=Asin(ωx+φ)的解析式
    (多选)(2020·新高考卷Ⅰ)如图是函数y=sin(ωx+φ)的部分图象,则sin(ωx+φ)=(  )

    A.sin B.sin
    C.cos D.cos
    【解析】 由题图可知,函数的最小正周期T=2=π,所以=π,ω=±2.当ω=2时,y=sin(2x+φ),将点代入得,sin=0,所以2×+φ=2kπ+π,k∈Z,即φ=2kπ+,k∈Z,故y=sin.由于y=sin=sin[π-(2x+)]=sin,故选项B正确;y=sin(-2x)=cos =cos,选项C正确;对于选项A,当x=时,sin=1≠0,错误;对于选项D,当x==时,cos=1≠-1,错误.当ω=-2时,y=sin(-2x+φ),将代入,得sin(-2×+φ)=0,结合函数图象,知-2×+φ=π+2kπ,k∈Z,得φ=+2kπ,k∈Z,所以y=sin,但当x=0时,y=sin(-2x+)=-<0,与图象不符合,舍去.综上,选BC.
    【答案】 BC

    确定y=Asin(ωx+φ)+b(A>0,ω>0)的步骤和方法
    (1)求A,b,确定函数的最大值M和最小值m,
    则A=,b=.
    (2)求ω,确定函数的最小正周期T,则可得ω=.
    (3)求φ,常用的方法有:
    ①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入图象与直线y=b的交点求解(此时要注意交点在上升区间上还是在下降区间上);
    ②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:
    “最大值点”(即图象的“峰点”)时ωx+φ =+2kπ(k∈Z);“最小值点”(即图象的“谷点”)时ωx+φ=+2kπ(k∈Z). 

    1.已知函数f(x)=Asin(ωx+φ)
    的最小正周期是π,且当x=时,f(x)取得最大值2,则f(x)=________.
    解析:因为函数f(x)的最小正周期是π,所以ω=2.又因为x=时,f(x)取得最大值2.
    所以A=2,
    同时2×+φ=2kπ+,k∈Z,
    φ=2kπ+,k∈Z,因为-0,0

    相关试卷

    新高考数学一轮复习课时跟踪检测(二十一)函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用 (含解析):

    这是一份新高考数学一轮复习课时跟踪检测(二十一)函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用 (含解析),共10页。试卷主要包含了基础练——练手感熟练度,综合练——练思维敏锐度,自选练——练高考区分度等内容,欢迎下载使用。

    新高考数学一轮复习讲练测专题5.5函数y=Asin(ωx+φ)的图象及其应用(练)(含解析):

    这是一份新高考数学一轮复习讲练测专题5.5函数y=Asin(ωx+φ)的图象及其应用(练)(含解析),共28页。试卷主要包含了【多选题】等内容,欢迎下载使用。

    (新高考)高考数学一轮复习素养练习 第5章 第5讲 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用 (含解析):

    这是一份(新高考)高考数学一轮复习素养练习 第5章 第5讲 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用 (含解析),共18页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map