|试卷下载
终身会员
搜索
    上传资料 赚现金
    陕西省安康市汉滨区恒口高中学服务区重点名校2022年十校联考最后数学试题含解析
    立即下载
    加入资料篮
    陕西省安康市汉滨区恒口高中学服务区重点名校2022年十校联考最后数学试题含解析01
    陕西省安康市汉滨区恒口高中学服务区重点名校2022年十校联考最后数学试题含解析02
    陕西省安康市汉滨区恒口高中学服务区重点名校2022年十校联考最后数学试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西省安康市汉滨区恒口高中学服务区重点名校2022年十校联考最后数学试题含解析

    展开
    这是一份陕西省安康市汉滨区恒口高中学服务区重点名校2022年十校联考最后数学试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,下列各运算中,计算正确的是,下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.对于不等式组,下列说法正确的是(  )
    A.此不等式组的正整数解为1,2,3
    B.此不等式组的解集为
    C.此不等式组有5个整数解
    D.此不等式组无解
    2.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是(       )

    A. B. C. D.
    3.某几何体的左视图如图所示,则该几何体不可能是(  )

    A. B. C. D.
    4.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为(   )
    A.﹣1 B.0 C.1 D.3
    5.在如图的计算程序中,y与x之间的函数关系所对应的图象大致是( )

    A. B. C. D.
    6.下列各运算中,计算正确的是(  )
    A.a12÷a3=a4 B.(3a2)3=9a6
    C.(a﹣b)2=a2﹣ab+b2 D.2a•3a=6a2
    7.在解方程-1=时,两边同时乘6,去分母后,正确的是(  )
    A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)
    C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)
    8.函数y=ax2与y=﹣ax+b的图象可能是(  )
    A. B.
    C. D.
    9.下列计算正确的是(  )
    A.x2+x3=x5 B.x2•x3=x5 C.(﹣x2)3=x8 D.x6÷x2=x3
    10. “可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为( )
    A.0.8×1011 B.8×1010 C.80×109 D.800×108
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为_________.

    12.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.
    13.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.

    14.地球上的海洋面积约为361000000km1,则科学记数法可表示为_______km1.
    15.在直角三角形ABC中,∠C=90°,已知sinA=,则cosB=_______.
    16.⊙M的圆心在一次函数y=x+2图象上,半径为1.当⊙M与y轴相切时,点M的坐标为_____.

    17.如图所示,四边形ABCD中,,对角线AC、BD交于点E,且,,若,,则CE的长为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)如图所示,内接于圆O,于D;
    (1)如图1,当AB为直径,求证:;
    (2)如图2,当AB为非直径的弦,连接OB,则(1)的结论是否成立?若成立请证明,不成立说明由;
    (3)如图3,在(2)的条件下,作于E,交CD于点F,连接ED,且,若,,求CF的长度.

    19.(5分)如图,在平面直角坐标系中,二次函数的图象与轴交于,两点,与轴交于点,点的坐标为.

    (1)求二次函数的解析式;
    (2)若点是抛物线在第四象限上的一个动点,当四边形的面积最大时,求点的坐标,并求出四边形的最大面积;
    (3)若为抛物线对称轴上一动点,直接写出使为直角三角形的点的坐标.
    20.(8分)计算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣1
    21.(10分)计算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.
    22.(10分)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于点A(1,0)和点B(﹣3,0).绕点A旋转的直线l:y=kx+b1交抛物线于另一点D,交y轴于点C.
    (1)求抛物线的函数表达式;
    (2)当点D在第二象限且满足CD=5AC时,求直线l的解析式;
    (3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出△ACE面积的最大值;
    (4)如图2,在抛物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由.

    23.(12分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;若菜园面积为384m2,求x的值;求菜园的最大面积.

    24.(14分)已知矩形ABCD,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部(如图),将半圆O绕点A顺时针旋转α度(0°≤α≤180°)
    (1)半圆的直径落在对角线AC上时,如图所示,半圆与AB的交点为M,求AM的长;
    (2)半圆与直线CD相切时,切点为N,与线段AD的交点为P,如图所示,求劣弧AP的长;
    (3)在旋转过程中,半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,直接写出d的取值范围.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    解:,解①得x≤,解②得x>﹣1,所以不等式组的解集为﹣1<x≤,所以不等式组的整数解为1,2,1.故选A.
    点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
    2、A
    【解析】
    【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解.
    【详解】作直径CG,连接OD、OE、OF、DG.
    ∵CG是圆的直径,
    ∴∠CDG=90°,则DG==8,
    又∵EF=8,
    ∴DG=EF,
    ∴,
    ∴S扇形ODG=S扇形OEF,
    ∵AB∥CD∥EF,
    ∴S△OCD=S△ACD,S△OEF=S△AEF,
    ∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=π×52=,
    故选A.

    【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.
    3、D
    【解析】
    解:几何体的左视图是从左面看几何体所得到的图形,选项A、B、C的左视图均为从左往右正方形个数为2,1,符合题意,选项D的左视图从左往右正方形个数为2,1,1,
    故选D.
    【点睛】
    本题考查几何体的三视图.
    4、D
    【解析】
    分析:由于方程x2﹣4x+c+1=0有两个相等的实数根,所以∆ =b2﹣4ac=0,可得关于c的一元一次方程,然后解方程求出c的值.
    详解:由题意得,
    (-4)2-4(c+1)=0,
    c=3.
    故选D.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆ =b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
    5、A
    【解析】
    函数→一次函数的图像及性质
    6、D
    【解析】
    【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.
    【详解】A、原式=a9,故A选项错误,不符合题意;
    B、原式=27a6,故B选项错误,不符合题意;
    C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;
    D、原式=6a2,故D选项正确,符合题意,
    故选D.
    【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.
    7、D
    【解析】
    解: ,∴3(x﹣1)﹣6=2(3x+1),故选D.
    点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.
    8、B
    【解析】
    选项中,由图可知:在,;在,,∴,所以A错误;
    选项中,由图可知:在,;在,,∴,所以B正确;
    选项中,由图可知:在,;在,,∴,所以C错误;
    选项中,由图可知:在,;在,,∴,所以D错误.
    故选B.
    点睛:在函数与中,相同的系数是“”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.
    9、B
    【解析】
    分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.
    详解:A、不是同类项,无法计算,故此选项错误;
    B、 正确;
    C、 故此选项错误;
    D、 故此选项错误;
    故选:B.
    点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.
    10、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:将800亿用科学记数法表示为:8×1.
    故选:B.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    由勾股定理可先求得AM,利用条件可证得△ABM∽△EMA,则可求得AE的长,进一步可求得DE.
    【详解】
    详解:∵正方形ABCD,
    ∴∠B=90°.
    ∵AB=12,BM=5,
    ∴AM=1.
    ∵ME⊥AM,
    ∴∠AME=90°=∠B.
    ∵∠BAE=90°,
    ∴∠BAM+∠MAE=∠MAE+∠E,
    ∴∠BAM=∠E,
    ∴△ABM∽△EMA,
    ∴=,即=,
    ∴AE=,
    ∴DE=AE﹣AD=﹣12=.
    故答案为.
    【点睛】
    本题主要考查相似三角形的判定和性质,利用条件证得△ABM∽△EMA是解题的关键.
    12、85
    【解析】
    根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.
    【详解】
    解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,
    中位数为中间两数84和86的平均数,
    ∴这六位同学成绩的中位数是85.
    【点睛】
    本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.
    13、15
    【解析】
    分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值.
    详解:∵
    当y=127时, 解得:x=43;
    当y=43时,解得:x=15;
    当y=15时, 解得 不符合条件.
    则输入的最小正整数是15.
    故答案为15.
    点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
    14、3.61×2
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将361 000 000用科学记数法表示为3.61×2.
    故答案为3.61×2.
    15、.
    【解析】
    试题分析:解答此题要利用互余角的三角函数间的关系:sin(90°-α)=cosα,cos(90°-α)=sinα.
    试题解析:∵在△ABC中,∠C=90°,
    ∴∠A+∠B=90°,
    ∴cosB=sinA=.
    考点:互余两角三角函数的关系.
    16、(1,)或(﹣1,)
    【解析】
    设当⊙M与y轴相切时圆心M的坐标为(x,x+2),再根据⊙M的半径为1即可得出y的值.
    【详解】
    解:∵⊙M的圆心在一次函数y=x+2的图象上运动,
    ∴设当⊙M与y轴相切时圆心M的坐标为(x, x+2),
    ∵⊙M的半径为1,
    ∴x=1或x=−1,
    当x=1时,y=,
    当x=−1时,y=.
    ∴P点坐标为:(1, )或(−1, ).
    故答案为(1, )或(−1, ).
    【点睛】
    本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.
    17、
    【解析】
    此题有等腰三角形,所以可作BH⊥CD,交EC于点G,利用三线合一性质及邻补角互补可得∠BGD=120°,根据四边形内角和360°,得到∠ABG+∠ADG=180°.此时再延长GB至K,使AK=AG,构造出等边△AGK.易证△ABK≌△ADG,从而说明△ABD是等边三角形,BD=AB=,根据DG、CG、GH线段之间的关系求出CG长度,在Rt△DBH中利用勾股定理及三角函数知识得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG长度,最后CE=CG+GE求解.
    【详解】
    如图,作于H,交AC于点G,连接DG.

    ∵,
    ∴BH垂直平分CD,
    ∴,
    ∴,
    ∴,
    ∴,
    延长GB至K,连接AK使,则是等边三角形,
    ∴,
    又,
    ∴≌(),
    ∴,
    ∴是等边三角形,
    ∴,
    设,则,,
    ∴,
    ∴,
    在中,,解得,,
    当时,,所以,
    ∴,,,
    作,设,,,,,
    ∴,,
    ∴,则,
    故答案为
    【点睛】
    本题主要考查了等腰三角形的性质及等边三角形、全等三角形的判定和性质以及勾股定理的运用,综合性较强,正确作出辅助线是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)见解析;(2)成立;(3)
    【解析】
    (1)根据圆周角定理求出∠ACB=90°,求出∠ADC=90°,再根据三角形内角和定理求出即可;
    (2)根据圆周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;
    (3)分别延长AE、CD交⊙O于H、K,连接HK、CH、AK,在AD上取DG=BD,延长CG交AK于M,延长KO交⊙O于N,连接CN、AN,求出关于a的方程,再求出a即可.
    【详解】
    (1)证明:∵AB为直径,
    ∴,
    ∵于D,
    ∴,
    ∴,,
    ∴;
    (2)成立,
    证明:连接OC,

    由圆周角定理得:,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴;
    (3)分别延长AE、CD交⊙O于H、K,连接HK、CH、AK,

    ∵,,
    ∴,
    ∴,,
    ∵,
    ∴,
    ∵根据圆周角定理得:,
    ∴,
    ∴由三角形内角和定理得:,
    ∴,
    ∴,
    同理,
    ∵,
    ∴,
    在AD上取,延长CG交AK于M,则,

    ∴,
    ∴,
    延长KO交⊙O于N,连接CN、AN,
    则,
    ∴,
    ∵,
    ∴,
    ∴四边形CGAN是平行四边形,
    ∴,
    作于T,
    则T为CK的中点,
    ∵O为KN的中点,
    ∴,
    ∵,,
    ∴由勾股定理得:,
    ∴,
    作直径HS,连接KS,
    ∵,,
    ∴由勾股定理得:,
    ∴,
    ∴,
    设,,
    ∴,,
    ∵,
    ∴,
    解得:,
    ∴,
    ∴.
    【点睛】
    本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大.
    19、(1);(2)P点坐标为, ;(3) 或或或.
    【解析】
    (1)根据待定系数法把A、C两点坐标代入可求得二次函数的解析式;
    (2)由抛物线解析式可求得B点坐标,由B、C坐标可求得直线BC解析式,可设出P点坐标,用P点坐标表示出四边形ABPC的面积,根据二次函数的性质可求得其面积的最大值及P点坐标;
    (3)首先设出Q点的坐标,则可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三种情况,求解即可.
    【详解】
    解:(1)∵A(-1,0),在上,
    ,解得,
    ∴二次函数的解析式为;
    (2)在中,令可得,解得或,
    ,且,
    ∴经过、两点的直线为,
    设点的坐标为,如图,过点作轴,垂足为,与直线交于点,则,


    ∴当时,四边形的面积最大,此时P点坐标为,
    ∴四边形的最大面积为;
    (3),
    ∴对称轴为,
    ∴可设点坐标为,
    ,,
    ,,,
    为直角三角形,
    ∴有、和三种情况,
    ①当时,则有,即,解得或,此时点坐标为或;
    ②当时,则有,即,解得,此时点坐标为;
    ③当时,则有,即,解得,此时点坐标为;
    综上可知点的坐标为或或或.
    【点睛】
    本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.
    20、1
    【解析】
    根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.
    【详解】
    原式=1×+3﹣+1﹣1=1.
    【点睛】
    此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.
    21、
    【解析】
    分析:按照实数的运算顺序进行运算即可.
    详解:原式


    点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.
    22、(1)y=x2+x﹣;(2)y=﹣x+1;(3)当x=﹣2时,最大值为;(4)存在,点D的横坐标为﹣3或或﹣.
    【解析】
    (1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;
    (2)OC∥DF,则 即可求解;
    (3)由S△ACE=S△AME﹣S△CME即可求解;
    (4)分当AP为平行四边形的一条边、对角线两种情况,分别求解即可.
    【详解】
    (1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,
    即: 解得:
    故函数的表达式为: ①;
    (2)过点D作DF⊥x轴交于点F,过点E作y轴的平行线交直线AD于点M,

    ∵OC∥DF,∴OF=5OA=5,
    故点D的坐标为(﹣5,6),
    将点A、D的坐标代入一次函数表达式:y=mx+n得:,解得:
    即直线AD的表达式为:y=﹣x+1,
    (3)设点E坐标为 则点M坐标为


    ∵故S△ACE有最大值,
    当x=﹣2时,最大值为;
    (4)存在,理由:
    ①当AP为平行四边形的一条边时,如下图,

    设点D的坐标为
    将点A向左平移2个单位、向上平移4个单位到达点P的位置,
    同样把点D左平移2个单位、向上平移4个单位到达点Q的位置,
    则点Q的坐标为
    将点Q的坐标代入①式并解得:
    ②当AP为平行四边形的对角线时,如下图,

    设点Q坐标为点D的坐标为(m,n),
    AP中点的坐标为(0,2),该点也是DQ的中点,
    则: 即:
    将点D坐标代入①式并解得:
    故点D的横坐标为:或或.
    【点睛】
    本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方法求解点的坐标,本题难度大.
    23、(1)见详解;(2)x=18;(3) 416 m2.
    【解析】
    (1)根据“垂直于墙的长度=可得函数解析式;
    (2)根据矩形的面积公式列方程求解可得;
    (3)根据矩形的面积公式列出总面积关于x的函数解析式,配方成顶点式后利用二次函数的性质求解可得.
    【详解】
    (1)根据题意知,y==-x+;
    (2)根据题意,得(-x+)x=384,
    解得x=18或x=32.
    ∵墙的长度为24 m,∴x=18.
    (3)设菜园的面积是S,则S=(-x+)x=-x2+x=- (x-25)2+.
    ∵-<0,∴当x<25时,S随x的增大而增大.
    ∵x≤24,
    ∴当x=24时,S取得最大值,最大值为416.
    答:菜园的最大面积为416 m2.
    【点睛】
    本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题.
    24、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.
    【解析】
    (2)连接B′M,则∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的长度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根据相似三角形的性质可求出AM的长度;
    (2)连接OP、ON,过点O作OG⊥AD于点G,则四边形DGON为矩形,进而可得出DG、AG的长度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,进而可得出△AOP为等边三角形,再利用弧长公式即可求出劣弧AP的长;
    (3)由(2)可知:△AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B′在直线CD上的图形,在Rt△AB′D中(点B′在点D左边),利用勾股定理可求出B′D的长度进而可得出CB′的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围.
    【详解】
    (2)在图2中,连接B′M,则∠B′MA=90°.

    在Rt△ABC中,AB=4,BC=3,
    ∴AC=2.
    ∵∠B=∠B′MA=90°,∠BCA=∠MAB′,
    ∴△ABC∽△AMB′,
    ∴=,即=,
    ∴AM=;
    (2)在图3中,连接OP、ON,过点O作OG⊥AD于点G,

    ∵半圆与直线CD相切,
    ∴ON⊥DN,
    ∴四边形DGON为矩形,
    ∴DG=ON=2,
    ∴AG=AD-DG=2.
    在Rt△AGO中,∠AGO=90°,AO=2,AG=2,
    ∴∠AOG=30°,∠OAG=60°.
    又∵OA=OP,
    ∴△AOP为等边三角形,
    ∴==π.
    (3)由(2)可知:△AOP为等边三角形,
    ∴DN=GO=OA=,
    ∴CN=CD+DN=4+.
    当点B′在直线CD上时,如图4所示,

    在Rt△AB′D中(点B′在点D左边),AB′=4,AD=3,
    ∴B′D==,
    ∴CB′=4-.
    ∵AB′为直径,
    ∴∠ADB′=90°,
    ∴当点B′在点D右边时,半圆交直线CD于点D、B′.
    ∴当半圆弧与直线CD只有一个交点时,4-≤d<4或d=4+.
    【点睛】
    本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(2)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出∠OAG=60°;(3)依照题意画出图形,利用数形结合求出d的取值范围.

    相关试卷

    2023-2024学年陕西省安康市汉滨区恒口高中学服务区八年级数学第一学期期末经典试题含答案: 这是一份2023-2024学年陕西省安康市汉滨区恒口高中学服务区八年级数学第一学期期末经典试题含答案,共8页。试卷主要包含了下列各数是无理数的是等内容,欢迎下载使用。

    陕西省安康市汉滨区恒口高中学服务区2023-2024学年八上数学期末统考试题含答案: 这是一份陕西省安康市汉滨区恒口高中学服务区2023-2024学年八上数学期末统考试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,方程组的解为则a,b的值分别为,若点A等内容,欢迎下载使用。

    陕西省安康市汉滨区恒口高中学服务区2022-2023学年数学七下期末经典模拟试题含答案: 这是一份陕西省安康市汉滨区恒口高中学服务区2022-2023学年数学七下期末经典模拟试题含答案,共7页。试卷主要包含了若直线y=kx+k+1经过点等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map