年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    山东省济南市莱芜区市级名校2022年中考数学模拟精编试卷含解析

    山东省济南市莱芜区市级名校2022年中考数学模拟精编试卷含解析第1页
    山东省济南市莱芜区市级名校2022年中考数学模拟精编试卷含解析第2页
    山东省济南市莱芜区市级名校2022年中考数学模拟精编试卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省济南市莱芜区市级名校2022年中考数学模拟精编试卷含解析

    展开

    这是一份山东省济南市莱芜区市级名校2022年中考数学模拟精编试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )
    A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=1035
    2.下列各数是不等式组的解是(  )
    A.0 B. C.2 D.3
    3.已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是( )
    A.在⊙O内 B.在⊙O上
    C.在⊙O外 D.不能确定
    4.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交
    AB于G,连接DG,现在有如下4个结论:①≌;②;③∠GDE=45°;④
    DG=DE在以上4个结论中,正确的共有( )个

    A.1个 B.2 个 C.3 个 D.4个
    5.据《关于“十三五”期间全面深入推进教育信息化工作的指导意见》显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程.则数字6000万用科学记数法表示为(  )
    A.6×105 B.6×106 C.6×107 D.6×108
    6.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为( )

    A.5 B.6 C.8 D.12
    7.下列生态环保标志中,是中心对称图形的是(  )
    A. B. C. D.
    8.某中学篮球队12名队员的年龄如下表:
    年龄:(岁)
    13
    14
    15
    16
    人数
    1
    5
    4
    2
    关于这12名队员的年龄,下列说法错误的是( )
    A.众数是14岁 B.极差是3岁 C.中位数是14.5岁 D.平均数是14.8岁
    9.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
    ①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,
    其中正确的是( )

    A.①②③ B.①③④ C.①③⑤ D.②④⑤
    10.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )

    A.四条边相等的四边形是菱形 B.一组邻边相等的平行四边形是菱形
    C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直平分的四边形是菱形
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.一个多项式与的积为,那么这个多项式为 .
    12.已知二次函数的部分图象如图所示,则______;当x______时,y随x的增大而减小.

    13.如图,点A在反比例函数y=(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.

    14.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是_____.

    15.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为   .

    16.已知扇形的弧长为2,圆心角为60°,则它的半径为________.
    三、解答题(共8题,共72分)
    17.(8分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p= t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:
    (1)求日销售量y与时间t的函数关系式?
    (2)哪一天的日销售利润最大?最大利润是多少?
    (3)该养殖户有多少天日销售利润不低于2400元?

    18.(8分)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣1.求一次函数的解析式;求△AOB的面积;观察图象,直接写出y1>y1时x的取值范围.

    19.(8分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.

    20.(8分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.
    若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.
    21.(8分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.求BF的长.

    22.(10分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?
    23.(12分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.
    (1)求抛物线的解析式;
    (2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;
    (3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.

    24.小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C).他们各自在这三项活动中任选一个,每项活动被选中的可能性相同.
    (1)小明选择去郊游的概率为多少;
    (2)请用树状图或列表法求小明和小亮的选择结果相同的概率.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.
    ∵全班有x名同学,
    ∴每名同学要送出(x-1)张;
    又∵是互送照片,
    ∴总共送的张数应该是x(x-1)=1.
    故选B
    考点:由实际问题抽象出一元二次方程.
    2、D
    【解析】
    求出不等式组的解集,判断即可.
    【详解】

    由①得:x>-1,
    由②得:x>2,
    则不等式组的解集为x>2,即3是不等式组的解,
    故选D.
    【点睛】
    此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    3、B.
    【解析】
    试题解析:∵OP=5,
    ∴根据点到圆心的距离等于半径,则知点在圆上.
    故选B.
    考点:1.点与圆的位置关系;2.坐标与图形性质.
    4、C
    【解析】
    【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE==45〫,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断④是错误的.
    【详解】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,
    ∴∠DFG=∠A=90°,
    ∴△ADG≌△FDG,①正确;
    ∵正方形边长是12,
    ∴BE=EC=EF=6,
    设AG=FG=x,则EG=x+6,BG=12﹣x,
    由勾股定理得:EG2=BE2+BG2,
    即:(x+6)2=62+(12﹣x)2,
    解得:x=4
    ∴AG=GF=4,BG=8,BG=2AG,②正确;
    ∵△ADG≌△FDG,△DCE≌△DFE,
    ∴∠ADG=∠FDG,∠FDE=∠CDE
    ∴∠GDE==45〫.③正确;
    BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;
    ∴正确说法是①②③
    故选:C
    【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.
    5、C
    【解析】
    将一个数写成的形式,其中,n是正数,这种记数的方法叫做科学记数法,根据定义解答即可.
    【详解】
    解:6000万=6×1.
    故选:C.
    【点睛】
    此题考查科学记数法,当所表示的数的绝对值大于1时,n为正整数,其值等于原数中整数部分的数位减去1,当要表示的数的绝对值小于1时,n为负整数,其值等于原数中第一个非零数字前面所有零的个数的相反数,正确掌握科学记数法中n的值的确定是解题的关键.
    6、B
    【解析】
    试题分析:由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1.
    故选B.

    考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质
    7、B
    【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;
    C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.
    故选B.
    【考点】中心对称图形.
    8、D
    【解析】
    分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.
    解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;
    极差是:16﹣13=3,故选项B正确,不合题意;
    中位数是:14.5,故选项C正确,不合题意;
    平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.
    故选D.
    “点睛”此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.
    9、C
    【解析】
    试题解析:∵抛物线的顶点坐标A(1,3),
    ∴抛物线的对称轴为直线x=-=1,
    ∴2a+b=0,所以①正确;
    ∵抛物线开口向下,
    ∴a<0,
    ∴b=-2a>0,
    ∵抛物线与y轴的交点在x轴上方,
    ∴c>0,
    ∴abc<0,所以②错误;
    ∵抛物线的顶点坐标A(1,3),
    ∴x=1时,二次函数有最大值,
    ∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;
    ∵抛物线与x轴的一个交点为(4,0)
    而抛物线的对称轴为直线x=1,
    ∴抛物线与x轴的另一个交点为(-2,0),所以④错误;
    ∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)
    ∴当1<x<4时,y2<y1,所以⑤正确.
    故选C.
    考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.
    10、A
    【解析】
    根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.
    【详解】
    ∵ 将 △ABC 延底边 BC 翻折得到 △DBC ,
    ∴AB=BD , AC=CD ,
    ∵AB=AC ,
    ∴AB=BD=CD=AC ,
    ∴ 四边形 ABDC 是菱形;
    故选A.
    【点睛】
    本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    试题分析:依题意知
    =
    考点:整式运算
    点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。同底数幂相乘除,指数相加减。
    12、3, >1
    【解析】
    根据函数图象与x轴的交点,可求出c的值,根据图象可判断函数的增减性.
    【详解】
    解:因为二次函数的图象过点.
    所以,
    解得.
    由图象可知:时,y随x的增大而减小.
    故答案为(1). 3, (2). >1
    【点睛】
    此题考查二次函数图象的性质,数形结合法是解决函数问题经常采用的一种方法,关键是要找出图象与函数解析式之间的联系.
    13、1
    【解析】
    连结BD,利用三角形面积公式得到S△ADB=S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.
    【详解】
    连结BD,如图,

    ∵DC=2AD,
    ∴S△ADB=S△BDC=S△BAC=×6=2,
    ∵AD⊥y轴于点D,AB⊥x轴,
    ∴四边形OBAD为矩形,
    ∴S矩形OBAD=2S△ADB=2×2=1,
    ∴k=1.
    故答案为:1.
    【点睛】
    本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
    14、
    【解析】
    通过找到临界值解决问题.
    【详解】
    由题意知,令3x-1=x,
    x=,此时无输出值
    当x>时,数值越来越大,会有输出值;
    当x<时,数值越来越小,不可能大于10,永远不会有输出值
    故x≤,
    故答案为x≤.
    【点睛】
    本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.
    15、(﹣2,2)
    【解析】
    试题分析:∵直线y=2x+4与y轴交于B点,
    ∴x=0时,
    得y=4,
    ∴B(0,4).
    ∵以OB为边在y轴右侧作等边三角形OBC,
    ∴C在线段OB的垂直平分线上,
    ∴C点纵坐标为2.
    将y=2代入y=2x+4,得2=2x+4,
    解得x=﹣2.
    所以C′的坐标为(﹣2,2).
    考点:2.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移.
    16、6.
    【解析】
    分析: 设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.
    详解: 设扇形的半径为r,
    根据题意得:,
    解得 :r=6
    故答案为6.
    点睛: 此题考查弧长公式,关键是根据弧长公式解答.

    三、解答题(共8题,共72分)
    17、 (1)y=﹣2t+200(1≤t≤80,t为整数); (2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件.
    【解析】
    (1)根据函数图象,设解析式为y=kt+b,将(1,198)、(80,40)代入,利用待定系数法求解可得;
    (2)设日销售利润为w,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;
    (3)求出w=2400时t的值,结合函数图象即可得出答案;
    【详解】
    (1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:
    ,解得:,∴y=﹣2t+200(1≤t≤80,t为整数);
    (2)设日销售利润为w,则w=(p﹣6)y,
    当1≤t≤80时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,
    ∴当t=30时,w最大=2450;

    ∴第30天的日销售利润最大,最大利润为2450元.
    (3)由(2)得:当1≤t≤80时,
    w=﹣(t﹣30)2+2450,
    令w=2400,即﹣ (t﹣30)2+2450=2400,
    解得:t1=20、t2=40,
    ∴t的取值范围是20≤t≤40,
    ∴共有21天符合条件.
    【点睛】
    本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键.
    18、(1)y1=﹣x+1,(1)6;(3)x<﹣1或0<x<4
    【解析】
    试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;
    (1)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;
    (3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.
    试题解析:(1)设点A坐标为(﹣1,m),点B坐标为(n,﹣1)
    ∵一次函数y1=kx+b(k≠0)的图象与反比例函数y1=﹣的图象交于A、B两点
    ∴将A(﹣1,m)B(n,﹣1)代入反比例函数y1=﹣可得,m=4,n=4
    ∴将A(﹣1,4)、B(4,﹣1)代入一次函数y1=kx+b,可得
    ,解得
    ∴一次函数的解析式为y1=﹣x+1;,
    (1)在一次函数y1=﹣x+1中,
    当x=0时,y=1,即N(0,1);当y=0时,x=1,即M(1,0)
    ∴=×1×1+×1×1+×1×1=1+1+1=6;
    (3)根据图象可得,当y1>y1时,x的取值范围为:x<﹣1或0<x<4

    考点:1、一次函数,1、反比例函数,3、三角形的面积
    19、 (1) 反比例函数的解析式为y=,一次函数的解析式为y=﹣x+1.(2)2.
    【解析】
    (1)根据反比例函数y2=的图象过点A(2,3),利用待定系数法求出m,进而得出B点坐标,然后利用待定系数法求出一次函数解析式;
    (2)设直线y1=kx+b与x轴交于C,求出C点坐标,根据S△AOB=S△AOC﹣S△BOC,列式计算即可.
    【详解】
    (1)∵反比例函数y2=的图象过A(2,3),B(6,n)两点,∴m=2×3=6n,∴m=6,n=1,∴反比例函数的解析式为y=,B的坐标是(6,1).
    把A(2,3)、B(6,1)代入y1=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+1.
    (2)如图,设直线y=﹣x+1与x轴交于C,则C(2,0).
    S△AOB=S△AOC﹣S△BOC=×2×3﹣×2×1=12﹣1=2.

    【点睛】
    本题考查了待定系数法求反比例函数、一次函数解析式以及求三角形面积等知识,根据已知得出B点坐标以及得出S△AOB=S△AOC﹣S△BOC是解题的关键.
    20、112.1
    【解析】
    试题分析:(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<11;
    (2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.
    试题解析:解:(1)y=30﹣2x(6≤x<11).
    (2)设矩形苗圃园的面积为S,则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.
    点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.
    21、BF的长度是1cm.
    【解析】
    利用“两角法”证得△BEF∽△CDF,利用相似三角形的对应边成比例来求线段CF的长度.
    【详解】
    解:如图,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,
    ∴△BEF∽△CDF;
    ∴=,
    又∵AD=BC=260cm ,AB=CD=130cm ,AE=60cm
    ∴BE=70cm, CD=130cm,BC=260cm ,CF=(260-BF)cm
    ∴=,
    解得:BF=1.
    即:BF的长度是1cm.
    【点睛】
    本题主要考查相似三角形的判定和性质,关键要掌握:有两角对应相等的两三角形相似;两三角形相似,对应边的比相等.
    22、 (1) 4800元;(2) 降价60元.
    【解析】
    试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.
    试题解析:
    (1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;
    (2)设每件商品应降价x元,
    由题意得(360-x-280)(5x+60)=7200,
    解得x1=8,x2=60.
    要更有利于减少库存,则x=60.
    即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.
    点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.
    23、 (1)、y=-+x+4;(2)、不存在,理由见解析.
    【解析】
    试题分析:(1)、首先设抛物线的解析式为一般式,将点C和点A意见对称轴代入求出函数解析式;(2)、本题利用假设法来进行证明,假设存在这样的点,然后设出点F的坐标求出FH和FG的长度,然后得出面积与t的函数关系式,根据方程无解得出结论.
    试题解析:(1)、∵抛物线y=a+bx+c(a≠0)过点C(0,4) ∴C=4①
    ∵-=1 ∴b=-2a② ∵抛物线过点A(-2,0) ∴4a-2b+c="0" ③
    由①②③解得:a=-,b=1,c=4 ∴抛物线的解析式为:y=-+x+4
    (2)、不存在 假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G. 设点F的坐标为(t,+t+4),其中0<t<4 则FH=+t+4 FG=t
    ∴△OBF的面积=OB·FH=×4×(+t+4)=-+2t+8 △OFC的面积=OC·FG=2t
    ∴四边形ABFC的面积=△AOC的面积+△OBF的面积+△OFC的面积=-+4t+12
    令-+4t+12=17 即-+4t-5=0 △=16-20=-4<0 ∴方程无解
    ∴不存在满足条件的点F

    考点:二次函数的应用
    24、(1);(2).
    【解析】
    (1)利用概率公式直接计算即可;
    (2)首先根据题意列表,然后求得所有等可能的结果与小明和小亮选择结果相同的情况,再利用概率公式即可求得答案
    【详解】
    (1)∵小明分别是从看电影(记为A)、去郊游(记为B)、去图书馆(记为C)的一个景点去游玩,
    ∴小明选择去郊游的概率=;
    (2)列表得:

    A
    B
    C
    A
    (A,A)
    (B,A)
    (C,A)
    B
    (A,B)
    (B,B)
    (C,B)
    C
    (A,C)
    (B,C)
    (C,C)
    由列表可知两人选择的方案共有9种等可能的结果,其中选择同种方案有3种,
    所以小明和小亮的选择结果相同的概率==.
    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.

    相关试卷

    2022年江苏省姜堰实验市级名校中考数学模拟精编试卷含解析:

    这是一份2022年江苏省姜堰实验市级名校中考数学模拟精编试卷含解析,共17页。试卷主要包含了估算的值是在等内容,欢迎下载使用。

    2022届山东省枣庄市峄州市级名校中考数学模拟精编试卷含解析:

    这是一份2022届山东省枣庄市峄州市级名校中考数学模拟精编试卷含解析,共24页。

    2021-2022学年山东省济南市莱芜区市级名校中考数学考前最后一卷含解析:

    这是一份2021-2022学年山东省济南市莱芜区市级名校中考数学考前最后一卷含解析,共20页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map