山东省淄博市临淄区召口乡中学2021-2022学年中考数学对点突破模拟试卷含解析
展开
这是一份山东省淄博市临淄区召口乡中学2021-2022学年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了一组数据等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.设点和是反比例函数图象上的两个点,当<<时,<,则一次函数的图象不经过的象限是
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.下列运算结果正确的是( )
A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6 C.(﹣2x2)3=﹣8x6 D.4a2﹣(2a)2=2a2
3.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为( )
A. B. C. D.
4.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是
A.平均数 B.中位数 C.众数 D.方差
5.3点40分,时钟的时针与分针的夹角为( )
A.140° B.130° C.120° D.110°
6.滴滴快车是一种便捷的出行工具,计价规则如下表:
计费项目
里程费
时长费
远途费
单价
1.8元/公里
0.3元/分钟
0.8元/公里
注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.
小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )
A.10分钟 B.13分钟 C.15分钟 D.19分钟
7.如图所示的几何体,上下部分均为圆柱体,其左视图是( )
A. B. C. D.
8.如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为( )
A. B. C. D.
9.函数在同一直角坐标系内的图象大致是( )
A. B. C. D.
10.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是( )
A. B. C. D.
11.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为( )
A.5 B.6 C.7 D.9
12.在,,0,1这四个数中,最小的数是
A. B. C.0 D.1
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,▱ABCD中,AC⊥CD,以C为圆心,CA为半径作圆弧交BC于E,交CD的延长线于点F,以AC上一点O为圆心OA为半径的圆与BC相切于点M,交AD于点N.若AC=9cm,OA=3cm,则图中阴影部分的面积为_____cm1.
14.因式分解:2b2a2﹣a3b﹣ab3=_____.
15.﹣的绝对值是_____.
16.如图,在平行四边形 ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点 E,交 DC 的延长线于点 F,BG⊥AE,垂足为 G,BG=4,则△CEF 的周长为____.
17.如图,正△的边长为,点、在半径为的圆上,点在圆内,将正绕点逆时针针旋转,当点第一次落在圆上时,旋转角的正切值为_______________
18.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x轴、y轴的正半轴上,点Q在对角线OB上,若OQ=OC,则点Q的坐标为_______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.
(1)求证:DF是BF和CF的比例中项;
(2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.
20.(6分) “大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.
21.(6分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.
22.(8分)如图,在△ABC中,ABAC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.
(1)求证:AE为⊙O的切线;
(2)当BC=4,AC=6时,求⊙O的半径;
(3)在(2)的条件下,求线段BG的长.
23.(8分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+1.设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?
24.(10分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.
25.(10分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
26.(12分)在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表.
等级
得分x(分)
频数(人)
A
95<x≤100
4
B
90<x≤95
m
C
85<x≤90
n
D
80<x≤85
24
E
75<x≤80
8
F
70<x≤75
4
请你根据图表中的信息完成下列问题:
(1)本次抽样调查的样本容量是 .其中m= ,n= .
(2)扇形统计图中,求E等级对应扇形的圆心角α的度数;
(3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?
(4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.
27.(12分)(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;
(2)先化简,再求值:()+,其中a=﹣2+.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
∵点和是反比例函数图象上的两个点,当<<1时,<,即y随x增大而增大,
∴根据反比例函数图象与系数的关系:当时函数图象的每一支上,y随x的增大而减小;当时,函数图象的每一支上,y随x的增大而增大.故k<1.
∴根据一次函数图象与系数的关系:一次函数的图象有四种情况:
①当,时,函数的图象经过第一、二、三象限;
②当,时,函数的图象经过第一、三、四象限;
③当,时,函数的图象经过第一、二、四象限;
④当,时,函数的图象经过第二、三、四象限.
因此,一次函数的,,故它的图象经过第二、三、四象限,不经过第一象限.故选A.
2、C
【解析】
根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得.
【详解】
A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;
B、(-a2)•a3=-a5,此选项计算错误;
C、(-2x2)3=-8x6,此选项计算正确;
D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.
故选:C.
【点睛】
本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则.
3、B
【解析】
由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
∵a<0,
∴抛物线的开口方向向下,
故第三个选项错误;
∵c<0,
∴抛物线与y轴的交点为在y轴的负半轴上,
故第一个选项错误;
∵a<0、b>0,对称轴为x=>0,
∴对称轴在y轴右侧,
故第四个选项错误.
故选B.
4、D
【解析】
解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;
B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
D.原来数据的方差==,
添加数字2后的方差==,
故方差发生了变化.
故选D.
5、B
【解析】
根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:3点40分时针与分针相距4+=份,
30°×=130,
故选B.
【点睛】
本题考查了钟面角,确定时针与分针相距的份数是解题关键.
6、D
【解析】
设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.
【详解】
设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:
1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),
10.8+0.3x=16.5+0.3y,
0.3(x-y)=5.7,
x-y=19,
故答案为D.
【点睛】
本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.
7、C
【解析】
试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.
考点:简单组合体的三视图.
8、A
【解析】
先利用勾股定理计算出AB,再在Rt△BDE中,求出BD即可;
【详解】
解:∵∠C=90°,AC=4,BC=3,
∴AB=5,
∵△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,
∴AE=AC=4,DE=BC=3,
∴BE=AB-AE=5-4=1,
在Rt△DBE中,BD=,
故选A.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
9、C
【解析】
根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.
【详解】
当a>0时,二次函数的图象开口向上,
一次函数的图象经过一、三或一、二、三或一、三、四象限,
故A、D不正确;
由B、C中二次函数的图象可知,对称轴x=->0,且a>0,则b<0,
但B中,一次函数a>0,b>0,排除B.
故选C.
10、D
【解析】
分析:根据相似三角形的性质进行解答即可.
详解:∵在平行四边形ABCD中,
∴AE∥CD,
∴△EAF∽△CDF,
∵
∴
∴
∵AF∥BC,
∴△EAF∽△EBC,
∴
故选D.
点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.
11、B
【解析】
直接利用平均数的求法进而得出x的值,再利用中位数的定义求出答案.
【详解】
∵一组数据1,7,x,9,5的平均数是2x,
∴,
解得:,
则从大到小排列为:3,5,1,7,9,
故这组数据的中位数为:1.
故选B.
【点睛】
此题主要考查了中位数以及平均数,正确得出x的值是解题关键.
12、A
【解析】
【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案.
【详解】由正数大于零,零大于负数,得
,
最小的数是,
故选A.
【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、11π﹣.
【解析】
阴影部分的面积=扇形ECF的面积-△ACD的面积-△OCM的面积-扇形AOM的面积-弓形AN的面积.
【详解】
解:连接OM,ON.
∴OM=3,OC=6,
∴
∴
∴扇形ECF的面积
△ACD的面积
扇形AOM的面积
弓形AN的面积
△OCM的面积
∴阴影部分的面积=扇形ECF的面积−△ACD的面积−△OCM的面积−扇形AOM的面积−弓形AN的面积
故答案为.
【点睛】
考查不规则图形的面积的计算,掌握扇形的面积公式是解题的关键.
14、﹣ab(a﹣b)2
【解析】
首先确定公因式为ab,然后提取公因式整理即可.
【详解】
2b2a2﹣a3b﹣ab3=ab(2ab-a2-b2)=﹣ab(a﹣b)2,所以答案为﹣ab(a﹣b)2.
【点睛】
本题考查了因式分解-提公因式法,解题的关键是掌握提公因式法的概念.
15、
【解析】
绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示.|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离.
【详解】
﹣的绝对值是|﹣|=
【点睛】
本题考查的是绝对值,熟练掌握绝对值的定义是解题的关键.
16、8
【解析】
试题解析:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,
∴∠BAF=∠DAF,
∵AB∥DF,
∴∠BAF=∠F,
∴∠F=∠DAF,
∴△ADF是等腰三角形,AD=DF=9;
∵AD∥BC,
∴△EFC是等腰三角形,且FC=CE.
∴EC=FC=9-6=3,
∴AB=BE.
∴在△ABG中,BG⊥AE,AB=6,BG=4
可得:AG=2,
又∵BG⊥AE,
∴AE=2AG=4,
∴△ABE的周长等于16,
又∵▱ABCD,
∴△CEF∽△BEA,相似比为1:2,
∴△CEF的周长为8
17、
【解析】
作辅助线,首先求出∠DAC的大小,进而求出旋转的角度,即可得出答案.
【详解】
如图,分别连接OA、OB、OD;
∵OA=OB= ,AB=2,
∴△OAB是等腰直角三角形,
∴∠OAB=45°;
同理可证:∠OAD=45°,
∴∠DAB=90°;
∵∠CAB=60°,
∴∠DAC=90°−60°=30°,
∴旋转角的正切值是,
故答案为:.
【点睛】
此题考查等边三角形的性质,旋转的性质,点与圆的位置关系,解直角三角形,解题关键在于作辅助线.
18、 (,)
【解析】
如图,过点Q作QD⊥OA于点D,
∴∠QDO=90°.
∵四边形OABC是正方形,且边长为2,OQ=OC,
∴∠QOA=45°,OQ=OC=2,
∴△ODQ是等腰直角三角形,
∴OD=OQ==.
∴点Q的坐标为.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、证明见解析
【解析】
试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;
(2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得 ,
由(1)可得 ,从而得 ,问题得证.
试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,
∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,
∵E是AC的中点,
∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,
∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,
又∵∠BFD=∠DFC,
∴△BFD∽△DFC,
∴BF:DF=DF:FC,
∴DF2=BF·CF;
(2)∵AE·AC=ED·DF,
∴ ,
又∵∠A=∠A,
∴△AEG∽△ADC,
∴∠AEG=∠ADC=90°,
∴EG∥BC,
∴ ,
由(1)知△DFD∽△DFC,
∴ ,
∴ ,
∴EG·CF=ED·DF.
20、(1)40;(2)72;(3)1.
【解析】
(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)用800乘以样本中最想去A景点的人数所占的百分比即可.
【详解】
(1)被调查的学生总人数为8÷20%=40(人);
(2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:
扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;
(3)800×=1,所以估计“最想去景点B“的学生人数为1人.
21、(1)(20+2x),(40﹣x);(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.
【解析】
(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;
(2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.
【详解】
(1)、设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,
故答案为(20+2x),(40-x);
(2)、根据题意可得:(20+2x)(40-x)=1200,
解得:
即每件童装降价10元或20元时,平均每天盈利1200元;
(3)、(20+2x)(40-x)=2000, ,
∵此方程无解,
∴不可能盈利2000元.
【点睛】
本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.
22、(1)证明见解析;(2);(3)1.
【解析】
(1)连接OM,如图1,先证明OM∥BC,再根据等腰三角形的性质判断AE⊥BC,则OM⊥AE,然后根据切线的判定定理得到AE为⊙O的切线;
(2)设⊙O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明△AOM∽△ABE,则利用相似比得到,然后解关于r的方程即可;
(3)作OH⊥BE于H,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH=BE-HE=,再根据垂径定理得到BH=HG=,所以BG=1.
【详解】
解:(1)证明:连接OM,如图1,
∵BM是∠ABC的平分线,
∴∠OBM=∠CBM,
∵OB=OM,
∴∠OBM=∠OMB,
∴∠CBM=∠OMB,
∴OM∥BC,
∵AB=AC,AE是∠BAC的平分线,
∴AE⊥BC,
∴OM⊥AE,
∴AE为⊙O的切线;
(2)解:设⊙O的半径为r,
∵AB=AC=6,AE是∠BAC的平分线,
∴BE=CE=BC=2,
∵OM∥BE,
∴△AOM∽△ABE,
∴,即,解得r=,
即设⊙O的半径为;
(3)解:作OH⊥BE于H,如图,
∵OM⊥EM,ME⊥BE,
∴四边形OHEM为矩形,
∴HE=OM=,
∴BH=BE﹣HE=2﹣=,
∵OH⊥BG,
∴BH=HG=,
∴BG=2BH=1.
23、 (1)35元;(2)30元.
【解析】
(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,利用配方法得出最值;
(2)令w=2000,然后解一元二次方程,从而求出销售单价.
【详解】
解:(1)由题意,得:
W=(x-20)×y
=(x-20)(-10x+1)
=-10x2+700x-10000
=-10(x-35)2+2250
当x=35时,W取得最大值,最大值为2250,
答:当销售单价定为35元时,每月可获得最大利润为2250元;
(2)由题意,得:,
解得:,,
销售单价不得高于32元,
销售单价应定为30元.
答:李明想要每月获得2000元的利润,销售单价应定为30元.
【点睛】
本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题.
24、不公平
【解析】
【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得.
【详解】根据题意列表如下:
1
2
3
1
1
(1,1)
(2,1)
(3,1)
(1,1)
2
(1,2)
(2,2)
(3,2)
(1,2)
3
(1,3)
(2,3)
(3,3)
(1,3)
1
(1,1)
(2,1)
(3,1)
(1,1)
所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,
∴P(甲获胜)=,P(乙获胜)=1﹣=,
则该游戏不公平.
【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.
25、(1)120件;(2)150元.
【解析】
试题分析:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫可设为2x件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.
试题解析:(1)设该商家购进的第一批衬衫是件,则第二批衬衫是件.
由题意可得:,解得,经检验是原方程的根.
(2)设每件衬衫的标价至少是元.
由(1)得第一批的进价为:(元/件),第二批的进价为:(元)
由题意可得:
解得:,所以,,即每件衬衫的标价至少是150元.
考点:1、分式方程的应用 2、一元一次不等式的应用.
26、(1)80,12,28;(2)36°;(3)140人;(4)
【解析】
(1)用D组的频数除以它所占的百分比得到样本容量;用样本容量乘以B组所占的百分比得到m的值,然后用样本容量分别减去其它各组的频数即可得到n的值;
(2)用E组所占的百分比乘以360°得到α的值;
(3)利用样本估计整体,用700乘以A、B两组的频率和可估计体育测试成绩在A、B两个等级的人数;
(4)画树状图展示所有12种等可能的结果数,再找出恰好抽到甲和乙的结果数,然后根据概率公式求解.
【详解】
(1)24÷30%=80,
所以样本容量为80;
m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;
故答案为80,12,28;
(2)E等级对应扇形的圆心角α的度数=×360°=36°;
(3)700×=140,
所以估计体育测试成绩在A、B两个等级的人数共有140人;
(4)画树状图如下:
共12种等可能的结果数,其中恰好抽到甲和乙的结果数为2,
所以恰好抽到甲和乙的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.
27、(1)-1;(2).
【解析】
(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;
(2)先化简原式,然后将a的值代入即可求出答案.
【详解】
(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;
(2)原式=+
=
当a=﹣2+时,原式==.
【点睛】
本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
相关试卷
这是一份2023-2024学年山东省淄博市临淄区召口乡中学九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了若,则的值是等内容,欢迎下载使用。
这是一份山东省淄博市临淄区召口乡中学2023-2024学年八年级数学第一学期期末监测模拟试题含答案,共7页。试卷主要包含了下列运算正确的是,如图,能判定EB∥AC的条件是,9的算术平方根是等内容,欢迎下载使用。
这是一份2022-2023学年山东省淄博市临淄区召口乡中学七下数学期末检测模拟试题含答案,共6页。试卷主要包含了下列函数中,正比例函数是,分式 可变形为,下列计算正确的是等内容,欢迎下载使用。