


山东省临沂市名校2021-2022学年中考数学仿真试卷含解析
展开
这是一份山东省临沂市名校2021-2022学年中考数学仿真试卷含解析,共23页。试卷主要包含了下列运算正确的是,下列实数中,最小的数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是( )
A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD
2.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:
下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是( )
A.① B.② C.①③ D.②③
3.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是( )
A.2 B.3 C.4 D.5
4.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )
A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)
5.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )
A. B. C. D.
6.下列运算正确的是( )
A.a2·a3﹦a6 B.a3+ a3﹦a6 C.|-a2|﹦a2 D.(-a2)3﹦a6
7.一个多边形的每一个外角都等于72°,这个多边形是( )
A.正三角形 B.正方形 C.正五边形 D.正六边形
8.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:
①这栋居民楼共有居民140人
②每周使用手机支付次数为28~35次的人数最多
③有的人每周使用手机支付的次数在35~42次
④每周使用手机支付不超过21次的有15人
其中正确的是( )
A.①② B.②③ C.③④ D.④
9.下列实数中,最小的数是( )
A. B. C.0 D.
10.如图,已知E,B,F,C四点在一条直线上,,,添加以下条件之一,仍不能证明≌的是
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为__________.
12.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AC与BD相交于点E,AC=BC,DE=3,AD=5,则⊙O的半径为___________.
13.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2018的坐标为_____.
14.如果将“概率”的英文单词 probability中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b的概率是________.
15.对于函数,若x>2,则y______3(填“>”或“<”).
16.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是______.
三、解答题(共8题,共72分)
17.(8分)珠海某企业接到加工“无人船”某零件5000个的任务.在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成.求技术改进后每天加工零件的数量.
18.(8分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
3台
5台
1800元
第二周
4台
10台
3100元
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A,B两种型号的电风扇的销售单价.
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
19.(8分)在平面直角坐标系xOy中,点C是二次函数y=mx2+4mx+4m+1的图象的顶点,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.
(1)请你求出点A、B、C的坐标;
(2)若二次函数y=mx2+4mx+4m+1与线段AB恰有一个公共点,求m的取值范围.
20.(8分)如图,直线与第一象限的一支双曲线交于A、B两点,A在B的左边.
(1)若=4,B(3,1),求直线及双曲线的解析式:并直接写出不等式的解集;
(2)若A(1,3),第三象限的双曲线上有一点C,接AC、BC,设直线BC解析式为;当AC⊥AB时,求证:k为定值.
21.(8分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.CD与BE相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF1+CD1=FD1.
22.(10分)计算:(﹣2)0++4cos30°﹣|﹣|.
23.(12分)如图,平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,与反比例函数的图象交于点.
求反比例函数的表达式;
若点C在反比例函数的图象上,点D在x轴上,当四边形ABCD是平行四边形时,求点D的坐标.
24.如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.
(1)试判断∠CBD与∠CEB是否相等,并证明你的结论;
(2)求证:
(3)若BC=AB,求tan∠CDF的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.
【详解】
四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
A、∵AE=CF,
∴DE=BF,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF;
B、∵BE=DF,
四边形BFDE是等腰梯形,
本选项不一定能判定BE//DF;
C、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠EBF=∠FDE,
∴∠BED=∠BFD,
四边形BFDE是平行四边形,
∴BE//DF,
故本选项能判定BE//DF;
D、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠BED=∠BFD,
∴∠EBF=∠FDE,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF.
故选B.
【点睛】
本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.
2、B
【解析】
根据图形和各个小题的说法可以判断是否正确,从而解答本题
【详解】
当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;
随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;
虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.
故选:B.
【点睛】
此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.
3、D
【解析】
①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;
②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;
③因为∠BAC=90°,根据平行四边形的面积公式可作判断;
④根据三角形中位线定理可作判断;
⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.
【详解】
①∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵四边形ABCD是平行四边形,
∴AD∥BC,∠ABC=∠ADC=60°,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE=1,
∴△ABE是等边三角形,
∴AE=BE=1,
∵BC=2,
∴EC=1,
∴AE=EC,
∴∠EAC=∠ACE,
∵∠AEB=∠EAC+∠ACE=60°,
∴∠ACE=30°,
∵AD∥BC,
∴∠CAD=∠ACE=30°,
故①正确;
②∵BE=EC,OA=OC,
∴OE=AB=,OE∥AB,
∴∠EOC=∠BAC=60°+30°=90°,
Rt△EOC中,OC=,
∵四边形ABCD是平行四边形,
∴∠BCD=∠BAD=120°,
∴∠ACB=30°,
∴∠ACD=90°,
Rt△OCD中,OD=,
∴BD=2OD=,故②正确;
③由②知:∠BAC=90°,
∴S▱ABCD=AB•AC,
故③正确;
④由②知:OE是△ABC的中位线,
又AB=BC,BC=AD,
∴OE=AB=AD,故④正确;
⑤∵四边形ABCD是平行四边形,
∴OA=OC=,
∴S△AOE=S△EOC=OE•OC=××,
∵OE∥AB,
∴,
∴,
∴S△AOP= S△AOE==,故⑤正确;
本题正确的有:①②③④⑤,5个,
故选D.
【点睛】
本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.
4、C
【解析】
【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.
【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,
∴k>0,
A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;
B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;
C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;
D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,
故选C.
【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.
5、D
【解析】
由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.
【详解】
解:设每头牛值金x两,每只羊值金y两,
由5头牛、2只羊,值金10两可得:5x+2y=10,
由2头牛、5只羊,值金8两可得2x+5y=8,
则7头牛、7只羊,值金18两,据此可知7x+7y=18,
所以方程组错误,
故选:D.
【点睛】
本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.
6、C
【解析】
根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.
【详解】
a2·a3﹦a5,故A项错误;a3+ a3﹦2a3,故B项错误;a3+ a3﹦- a6,故D项错误,选C.
【点睛】
本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则.
7、C
【解析】
任何多边形的外角和是360°,用360°除以一个外角度数即可求得多边形的边数.
【详解】
360°÷72°=1,则多边形的边数是1.
故选C.
【点睛】
本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.
8、B
【解析】
根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.
【详解】
解:①这栋居民楼共有居民3+10+15+22+30+25+20=125人,此结论错误;
②每周使用手机支付次数为28~35次的人数最多,此结论正确;
③每周使用手机支付的次数在35~42次所占比例为,此结论正确;
④每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;
故选:B.
【点睛】
此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据
9、B
【解析】
根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.
【详解】
∵
相关试卷
这是一份2022年山东省临沂市河东区达标名校中考数学仿真试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,运用图形变化的方法研究下列问题,二元一次方程组的解为,下列函数中,二次函数是等内容,欢迎下载使用。
这是一份2021-2022学年山东省聊城市重点达标名校中考数学仿真试卷含解析,共22页。试卷主要包含了下列等式正确的是等内容,欢迎下载使用。
这是一份2021-2022学年山东省武城县达标名校中考数学仿真试卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,﹣的绝对值是,对于数据,分式方程=1的解为,实数4的倒数是,下列运算结果是无理数的是,如图,过点A等内容,欢迎下载使用。