山东省德州市宁津县重点达标名校2021-2022学年中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
A.20 B.24 C.28 D.30
2.1.桌面上放置的几何体中,主视图与左视图可能不同的是( )
A.圆柱 B.正方体 C.球 D.直立圆锥
3.将一根圆柱形的空心钢管任意放置,它的主视图不可能是( )
A. B. C. D.
4.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )
A. B. C.2 D.2
5.若式子在实数范围内有意义,则 x的取值范围是( )
A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1
6.下列计算结果为a6的是( )
A.a2•a3 B.a12÷a2 C.(a2)3 D.(﹣a2)3
7.∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为( )
A. B. C. D.
8.多项式ax2﹣4ax﹣12a因式分解正确的是( )
A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12) D.a(x+6)(x﹣2)
9.下列图形是中心对称图形的是( )
A. B. C. D.
10.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在平面直角坐标系中,函数y=(x>0)的图象经过矩形OABC的边AB、BC的中点E、F,则四边形OEBF的面积为________.
12.⊙O的半径为10cm,AB,CD是⊙O的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是 cm.
13.若不等式组 的解集是x<4,则m的取值范围是_____.
14.如图,已知,D、E分别是边AB、AC上的点,且设,,那么______用向量、表示
15.一组数据4,3,5,x,4,5的众数和中位数都是4,则x=_____.
16.已知 x(x+1)=x+1,则x=________.
17.若式子有意义,则x的取值范围是_____________.
三、解答题(共7小题,满分69分)
18.(10分)(本题满分8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
19.(5分)今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.
(1)求温馨提示牌和垃圾箱的单价各是多少元?
(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?
20.(8分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:
甲
7.2 9.69.67.89.3 4 6.58.59.99.6
乙
5.89.79.76.89.96.98.26.78.69.7
根据上面的数据,将下表补充完整:
4.0≤x≤4.9
5.0≤x≤5.9
6.0≤x≤6.9
7.0≤x≤7.9
8.0≤x≤8.9
9.0≤x≤10.0
甲
1
0
1
2
1
5
乙
____
____
_____
______
_____
_______
(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)
两组样本数据的平均数、中位数、众数如表所示:
结论:
人员
平均数(万元)
中位数(万元)
众数(万元)
甲
8.2
8.9
9.6
乙
8.2
8.4
9.7
(1)估计乙业务员能获得奖金的月份有______个;
(2)可以推断出_____业务员的销售业绩好,理由为_______.(至少从两个不同的角度说明推断的合理性)
21.(10分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.
22.(10分)如图,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,.
(1)求直线的表达式;
(2)若直线与矩形有公共点,求的取值范围;
(3)直线与矩形没有公共点,直接写出的取值范围.
23.(12分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.
(1)请画出树状图并写出所有可能得到的三位数;
(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.
24.(14分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠1)中的x与y的部分对应值如表
x
﹣1
1
1
3
y
﹣1
3
5
3
下列结论:
①ac<1;
②当x>1时,y的值随x值的增大而减小.
③3是方程ax2+(b﹣1)x+c=1的一个根;
④当﹣1<x<3时,ax2+(b﹣1)x+c>1.
其中正确的结论是 .
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
试题解析:根据题意得=30%,解得n=30,
所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.
故选D.
考点:利用频率估计概率.
2、B
【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B.
考点:简单几何体的三视图.
3、A
【解析】
试题解析:∵一根圆柱形的空心钢管任意放置,
∴不管钢管怎么放置,它的三视图始终是,,,主视图是它们中一个,
∴主视图不可能是.
故选A.
4、D
【解析】
【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.
【详解】过A作AD⊥BC于D,
∵△ABC是等边三角形,
∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,
∵AD⊥BC,
∴BD=CD=1,AD=BD=,
∴△ABC的面积为BC•AD==,
S扇形BAC==,
∴莱洛三角形的面积S=3×﹣2×=2π﹣2,
故选D.
【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.
5、A
【解析】
直接利用二次根式有意义的条件分析得出答案.
【详解】
∵式子在实数范围内有意义,
∴ x﹣1>0, 解得:x>1.
故选:A.
【点睛】
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
6、C
【解析】
分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.
【详解】
A、a2•a3=a5,此选项不符合题意;
B、a12÷a2=a10,此选项不符合题意;
C、(a2)3=a6,此选项符合题意;
D、(-a2)3=-a6,此选项不符合题意;
故选C.
【点睛】
本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.
7、D
【解析】
连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.
【详解】
连接CD,如图:
,CD=,AC=
∵,∴∠ADC=90°,∴tan∠BAC==.
故选D.
【点睛】
本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°.
8、A
【解析】
试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.
解:ax2﹣4ax﹣12a
=a(x2﹣4x﹣12)
=a(x﹣6)(x+2).
故答案为a(x﹣6)(x+2).
点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.
9、B
【解析】
根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.
A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选B.
考点:中心对称图形.
【详解】
请在此输入详解!
10、A
【解析】
∵在Rt△ABC中,∠C=90°,AB=4,AC=1,
∴BC== ,
则cosB== ,
故选A
二、填空题(共7小题,每小题3分,满分21分)
11、2
【解析】
设矩形OABC中点B的坐标为,
∵点E、F是AB、BC的中点,
∴点E、F的坐标分别为:、,
∵点E、F都在反比例函数的图象上,
∴S△OCF==,S△OAE=,
∴S矩形OABC=,
∴S四边形OEBF= S矩形OABC- S△OAE-S△OCF=.
即四边形OEBF的面积为2.
点睛:反比例函数中“”的几何意义为:若点P是反比例函数图象上的一点,连接坐标原点O和点P,过点P向坐标轴作垂线段,垂足为点D,则S△OPD=.
12、2或14
【解析】
分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.
【详解】
①当弦AB和CD在圆心同侧时,如图,
∵AB=16cm,CD=12cm,
∴AE=8cm,CF=6cm,
∵OA=OC=10cm,
∴EO=6cm,OF=8cm,
∴EF=OF−OE=2cm;
②当弦AB和CD在圆心异侧时,如图,
∵AB=16cm,CD=12cm,
∴AF=8cm,CE=6cm,
∵OA=OC=10cm,
∴OF=6cm,OE=8cm,
∴EF=OF+OE=14cm.
∴AB与CD之间的距离为14cm或2cm.
故答案为:2或14.
13、m≥1.
【解析】
∵不等式组的解集是x<1,
∴m≥1,
故答案为m≥1.
14、
【解析】
在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的运算可得出结果.
【详解】
解:在△ABC中,,∠A=∠A,
∴△ABC△ADE,
∴DE=BC,
∴=3=3
∴=,
故答案为.
【点睛】
本题考查了相似三角形的判定和性质以及向量的运算.
15、1
【解析】
一组数据中出现次数最多的数据叫做众数,由此可得出答案.
【详解】
∵一组数据1,3,5,x,1,5的众数和中位数都是1,
∴x=1,
故答案为1.
【点睛】
本题考查了众数的知识,解答本题的关键是掌握众数的定义.
16、1或-1
【解析】
方程可化为:
,
∴或,
∴或.
故答案为1或-1.
17、x<
【解析】
由题意得:1﹣2x>0,解得:,
故答案为.
三、解答题(共7小题,满分69分)
18、(1)见解析;(2)6或
【解析】
试题分析:(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;
(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.
试题解析:(1)证明:∵∠A=∠ABC=90°
∴AF∥BC
∴∠CBE=∠DFE,∠BCE=∠FDE
∵E是边CD的中点
∴CE=DE
∴△BCE≌△FDE(AAS)
∴BE=EF
∴四边形BDFC是平行四边形
(2)若△BCD是等腰三角形
①若BD=DC
在Rt△ABD中,AB=
∴四边形BDFC的面积为S=×3=6;
②若BD=DC
过D作BC的垂线,则垂足为BC得中点,不可能;
③若BC=DC
过D作DG⊥BC,垂足为G
在Rt△CDG中,DG=
∴四边形BDFC的面积为S=.
考点:三角形全等,平行四边形的判定,勾股定理,四边形的面积
19、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见解析
【解析】
(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;
(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.
【详解】
(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,
根据题意得,2x+3×3x=550,
∴x=50,
经检验,符合题意,
∴3x=150元,
即:温馨提示牌和垃圾箱的单价各是50元和150元;
(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,
根据题意得,意,
∴
∵y为正整数,
∴y为50,51,52,共3中方案;
有三种方案:①温馨提示牌50个,垃圾箱50个,
②温馨提示牌51个,垃圾箱49个,
③温馨提示牌52个,垃圾箱48个,
设总费用为w元
W=50y+150(100﹣y)=﹣100y+15000,
∵k=-100,∴w随y的增大而减小
∴当y=52时,所需资金最少,最少是9800元.
【点睛】
此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.
20、填表见解析;(1)6;(2)甲;甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
【解析】
(1)月销售额在8.0万元及以上可以获得奖金,去销售额中找到乙大于8.0的个数即可解题,
(2)根据中位数和平均数即可解题.
【详解】
解:如图,
销售额
数量
x
人员
4.0≤x≤4.9
5.0≤x≤5.9
6.0≤x≤6.9
7.0≤x≤7.9
8.0≤x≤8.9
9.0≤x≤10.0
甲
1
0
1
2
1
5
乙
0
1
3
0
2
4
(1)估计乙业务员能获得奖金的月份有6个;
(2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
【点睛】
本题考查了统计的相关知识,众数,平均数的应用,属于简单题,将图表信息转换成有用信息是解题关键.
21、(1)、(2)证明见解析(3)28
【解析】
试题分析:(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;
(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;
(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;
试题解析:(1)如图1,在正方形ABCD中,
∵BC=CD,∠B=∠CDF,BE=DF,
∴△CBE≌△CDF,
∴CE=CF;
(2)如图2,延长AD至F,使DF=BE,连接CF,
由(1)知△CBE≌△CDF,
∴∠BCE=∠DCF.
∴∠BCE+∠ECD=∠DCF+∠ECD
即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°,
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG,
∴GE=GF,
∴GE=DF+GD=BE+GD;
(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.
AE=AB-BE=12-4=8,
设DF=x,则AD=12-x,
根据(2)可得:DE=BE+DF=4+x,
在直角△ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,
解得:x=1.
则DE=4+1=2.
【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.
22、(1);(2);(3)
【解析】
(1)由条件可求得A、C的坐标,利用待定系数法可求得直线AC的表达式;
(2)结合图形,当直线平移到过C、A时与矩形有一个公共点,则可求得b的取值范围;
(3)由题意可知直线l过(0,10),结合图象可知当直线过B点时与矩形有一个公共点,结合图象可求得k的取值范围.
【详解】
解:
(1)
,
设直线表达式为,
,解得
直线表达式为;
(2) 直线可以看到是由直线平移得到,
当直线过时,直线与矩形有一个公共点,如图1,
当过点时,代入可得,解得.
当过点时,可得
直线与矩形有公共点时,的取值范围为;
(3) ,
直线过,且,
如图2,直线绕点旋转,当直线过点时,与矩形有一个公共点,逆时针旋转到与轴重合时与矩形有公共点,
当过点时,代入可得,解得
直线:与矩形没有公共点时的取值范围为
【点睛】
本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识.在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC有一个公共点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.
23、(1)见解析(2)不公平。理由见解析
【解析】
解:(1)画树状图得:
所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,,413,421,423,431,432。
(2)这个游戏不公平。理由如下:
∵组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8个,
∴甲胜的概率为,乙胜的概率为。
∵甲胜的概率≠乙胜的概率,∴这个游戏不公平。
(1)首先根据题意画出树状图,由树状图即可求得所有可能得到的三位数。
(2)由(1),可求得甲胜和乙胜的概率,比较是否相等即可得到答案。
24、①③④.
【解析】
试题分析:∵x=﹣1时y=﹣1,x=1时,y=3,x=1时,y=5,∴,
解得,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正确;
对称轴为直线,所以,当x>时,y的值随x值的增大而减小,故②错误;
方程为﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,
所以,3是方程ax2+(b﹣1)x+c=1的一个根,正确,故③正确;
﹣1<x<3时,ax2+(b﹣1)x+c>1正确,故④正确;
综上所述,结论正确的是①③④.
故答案为①③④.
【考点】二次函数的性质.
2022届山东省青岛4中重点达标名校中考数学全真模拟试卷含解析: 这是一份2022届山东省青岛4中重点达标名校中考数学全真模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,老师在微信群发了这样一个图等内容,欢迎下载使用。
2021-2022学年山东省安丘市重点名校中考数学全真模拟试卷含解析: 这是一份2021-2022学年山东省安丘市重点名校中考数学全真模拟试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,点P,的倒数是等内容,欢迎下载使用。
2021-2022学年浙江省义乌地区重点达标名校中考数学全真模拟试卷含解析: 这是一份2021-2022学年浙江省义乌地区重点达标名校中考数学全真模拟试卷含解析,共23页。试卷主要包含了关于x的方程等内容,欢迎下载使用。