山东省东营垦利区四校联考2021-2022学年中考三模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )
A.k≤2且k≠1 B.k<2且k≠1
C.k=2 D.k=2或1
2.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是
A. B. C. D.
3.港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为( )
A.35.578×103 B.3.5578×104
C.3.5578×105 D.0.35578×105
4.下列图形中,是轴对称图形的是( )
A. B. C. D.
5.一元二次方程x2-2x=0的解是( )
A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-2
6.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )
A. B.
C. D.
7.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )
A. B. C. D.
8.甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为( )
A.0个 B.1个 C.2个 D.3个
9.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是( )
A. B. C. D.
10.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是( )
A.相交 B.相切 C.相离 D.不能确定
11.中华人民共和国国家统计局网站公布,2016年国内生产总值约为74300亿元,将74300亿用科学计数法可以表示为( )
A. B. C. D.
12.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:
(1)出租车的速度为100千米/时;
(2)客车的速度为60千米/时;
(3)两车相遇时,客车行驶了3.75小时;
(4)相遇时,出租车离甲地的路程为225千米.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.直线y=﹣x+1分别交x轴,y轴于A、B两点,则△AOB的面积等于___.
14.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.
15.不等式组的解集是____________;
16.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )
17.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为______.
18.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是 .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(-2,0)与动点P(0,t)的直线MP记作l.
(1)若l的解析式为y=2x+4,判断此时点A是否在直线l上,并说明理由;
(2)当直线l与AD边有公共点时,求t的取值范围.
20.(6分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.
(1)求点M到AB的距离;(结果保留根号)
(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)
(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)
21.(6分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.
(1)求证:BF=CD;
(2)连接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四边形ABCD的周长.
22.(8分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.
求AP,BP的长(参考数据:≈1.4,≈1.7,≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?
23.(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______;
将条形统计图补充完整;
该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.
24.(10分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为 ,并补全条形统计图;该区今年共种植月季8000株,成活了约 株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.
25.(10分)解方程
(1)x1﹣1x﹣1=0
(1)(x+1)1=4(x﹣1)1.
26.(12分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.
27.(12分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.
【详解】
当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;
当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,
∴△=(-4)2-4(k-1)×4=0,
解得k=2,
综上可知k的值为1或2,
故选D.
【点睛】
本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.
2、B
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.
【详解】
解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;
B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;
C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;
D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.
故选:B.
【点睛】
本题重点考查三视图的定义以及考查学生的空间想象能力.
3、B
【解析】
科学计数法是a×,且,n为原数的整数位数减一.
【详解】
解:35578= 3.5578×,
故选B.
【点睛】
本题主要考查的是利用科学计数法表示较大的数,属于基础题型.理解科学计数法的表示方法是解题的关键.
4、B
【解析】
分析:根据轴对称图形的概念求解.
详解:A、不是轴对称图形,故此选项不合题意;
B、是轴对称图形,故此选项符合题意;
C、不是轴对称图形,故此选项不合题意;
D、不是轴对称图形,故此选项不合题意;
故选B.
点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.
5、A
【解析】
试题分析:原方程变形为:x(x-1)=0
x1=0,x1=1.
故选A.
考点:解一元二次方程-因式分解法.
6、D
【解析】
此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.
【详解】
解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,
又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.
故选D.
点评:本题考核立意相对较新,考核了学生的空间想象能力.
7、B
【解析】
根据俯视图可确定主视图的列数和每列小正方体的个数.
【详解】
由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成.
故答案选B.
【点睛】
由几何体的俯视图可确定该几何体的主视图和左视图.
8、A
【解析】
解:①由函数图象,得a=120÷3=40,
故①正确,
②由题意,得5.5﹣3﹣120÷(40×2),
=2.5﹣1.5,
=1.
∴甲车维修的时间为1小时;
故②正确,
③如图:
∵甲车维修的时间是1小时,
∴B(4,120).
∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.
∴E(5,240).
∴乙行驶的速度为:240÷3=80,
∴乙返回的时间为:240÷80=3,
∴F(8,0).
设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象得,
,,
解得,,
∴y1=80t﹣200,y2=﹣80t+640,
当y1=y2时,
80t﹣200=﹣80t+640,
t=5.2.
∴两车在途中第二次相遇时t的值为5.2小时,
故弄③正确,
④当t=3时,甲车行的路程为:120km,乙车行的路程为:80×(3﹣2)=80km,
∴两车相距的路程为:120﹣80=40千米,
故④正确,
故选A.
9、B
【解析】
【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.
【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,
故选B.
【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.
10、A
【解析】
试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.
解:∵⊙O的半径为3,圆心O到直线L的距离为2,
∵3>2,即:d<r,
∴直线L与⊙O的位置关系是相交.
故选A.
考点:直线与圆的位置关系.
11、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:74300亿=7.43×1012,
故选:D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12、D
【解析】
根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.
【详解】
由图象可得,
出租车的速度为:600÷6=100千米/时,故(1)正确,
客车的速度为:600÷10=60千米/时,故(2)正确,
两车相遇时,客车行驶时间为:600÷(100+60)=3.75(小时),故(3)正确,
相遇时,出租车离甲地的路程为:60×3.75=225千米,故(4)正确,
故选D.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、.
【解析】
先求得直线y=﹣x+1与x轴,y轴的交点坐标,再根据三角形的面积公式求得△AOB的面积即可.
【详解】
∵直线y=﹣x+1分别交x轴、y轴于A、B两点,
∴A、B点的坐标分别为(1,0)、(0,1),
S△AOB=OA•OB=×1×1=,
故答案为.
【点睛】
本题考查了直线与坐标轴的交点坐标及三角形的面积公式,正确求得直线y=﹣x+1与x轴、y轴的交点坐标是解决问题的关键.
14、
【解析】
认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案
【详解】
解:如图,过点P作PM⊥AB,则:∠PMB=90°,
当PM⊥AB时,PM最短,
因为直线y=x﹣3与x轴、y轴分别交于点A,B,
可得点A的坐标为(4,0),点B的坐标为(0,﹣3),
在Rt△AOB中,AO=4,BO=3,AB=,
∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,
∴△PBM∽△ABO,
∴,
即:,
所以可得:PM=.
15、﹣9<x≤﹣1
【解析】
分别求出两个不等式的解集,再求其公共解集.
【详解】
,
解不等式①,得:x≤-1,
解不等式②,得:x>-9,
所以不等式组的解集为:-9<x≤-1,
故答案为:-9<x≤-1.
【点睛】
本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
16、C
【解析】
先证明△BPE∽△CDP,再根据相似三角形对应边成比例列出式子变形可得.
【详解】
由已知可知∠EPD=90°,
∴∠BPE+∠DPC=90°,
∵∠DPC+∠PDC=90°,
∴∠CDP=∠BPE,
∵∠B=∠C=90°,
∴△BPE∽△CDP,
∴BP:CD=BE:CP,即x:3=y:(5-x),
∴y=(0<x<5);
故选C.
考点:1.折叠问题;2.相似三角形的判定和性质;3.二次函数的图象.
17、1
【解析】
首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.
解:设黄球的个数为x个,
根据题意得:=2/3解得:x=1.
∴黄球的个数为1.
18、(﹣b,a)
【解析】
解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),
设∠AOX=α,∠A1OD=β,A1坐标(x,y)则α+β="90°sinα=cosβ" cosα="sinβ" sinα==cosβ=
同理cos α==sinβ=
所以x=﹣b,y=a,
故A1坐标为(﹣b,a).
【点评】重点理解三角函数的定义和求解方法,主要应用公式sinα=cosβ,cosα=sinβ.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1)点A在直线l上,理由见解析;(2)≤t≤4.
【解析】
(1)由题意得点B、A坐标,把点A的横坐标x=-1代入解析式y=2x+4得出y的值,即可得出点A在直线l上;
(2)当直线l经过点D时,设l的解析式代入数值解出即可
【详解】
(1)此时点A在直线l上.
∵BC=AB=2,点O为BC中点,
∴点B(-1,0),A(-1,2).
把点A的横坐标x=-1代入解析式y=2x+4,得
y=2,等于点A的纵坐标2,
∴此时点A在直线l上.
(2)由题意可得,点D(1,2),及点M(-2,0),
当直线l经过点D时,设l的解析式为y=kx+t(k≠0),
∴解得
由(1)知,当直线l经过点A时,t=4.
∴当直线l与AD边有公共点时,t的取值范围是≤t≤4.
【点睛】
本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.
20、 (1) ; (2)95m.
【解析】
(1)过点M作MD⊥AB于点D,易求AD的长,再由BD=MD可得BD的长,即M到AB的距离;
(2)过点N作NE⊥AB于点E,易证四边形MDEN为平行四边形,所以ME的长可求出,再根据MN=AB-AD-BE计算即可.
【详解】
解:(1)过点M作MD⊥AB于点D,
∵MD⊥AB,
∴∠MDA=∠MDB=90°,
∵∠MAB=60°,∠MBA=45°,
∴在Rt△ADM中,;
在Rt△BDM中,,
∴BD=MD=,
∵AB=600m,
∴AD+BD=600m,
∴AD+,
∴AD=(300)m,
∴BD=MD=(900-300),
∴点M到AB的距离(900-300).
(2)过点N作NE⊥AB于点E,
∵MD⊥AB,NE⊥AB,
∴MD∥NE,
∵AB∥MN,
∴四边形MDEN为平行四边形,
∴NE=MD=(900-300),MN=DE,
∵∠NBA=53°,
∴在Rt△NEB中,,
∴BEm,
∴MN=AB-AD-BE.
【点睛】
考查了解直角三角形的应用,通过解直角三角形能解决实际问题中的很多有关测量问题,根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案是解题的关键.
21、(1)证明见解析;(2)12
【解析】
(1)由平行四边形的性质和角平分线得出∠BAF=∠BFA,即可得出AB=BF;
(2)由题意可证△ABF为等边三角形,点E是AF的中点. 可求EF、BF的值,即可得解.
【详解】
解:(1)证明:∵ 四边形ABCD为平行四边形,
∴ AB=CD,∠FAD=∠AFB
又∵ AF平分∠BAD,
∴ ∠FAD=∠FAB
∴ ∠AFB=∠FAB
∴ AB=BF
∴ BF=CD
(2)解:由题意可证△ABF为等边三角形,点E是AF的中点
在Rt△BEF中,∠BFA=60°,BE=,
可求EF=2,BF=4
∴ 平行四边形ABCD的周长为12
22、(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时
【解析】
(1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得 AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;
(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.
【详解】
(1)如图,过点P作PE⊥MN,垂足为E,
由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,
∵PE=30海里,∴AP=60海里,
∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE= 45°,
∴PE=EB=30海里,
在Rt△PEB中,BP==30≈42海里,
故AP=60海里,BP=42(海里);
(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,
根据题意,得,
解得x=20,
经检验,x=20是原方程的解,
甲船的速度为1.2x=1.2×20=24(海里/时).,
答:甲船的速度是24海里/时,乙船的速度是20海里/时.
【点睛】
本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.
23、(1)100,108°;(2)答案见解析;(3)600人.
【解析】
(1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.
【详解】
解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,
∴此次共抽查了:20÷20%=100人.
喜欢用QQ沟通所占比例为:,
∴QQ的扇形圆心角的度数为:360°×=108°.
(2)喜欢用短信的人数为:100×5%=5人
喜欢用微信的人数为:100-20-5-30-5=40
补充图形,如图所示:
(3)喜欢用微信沟通所占百分比为:×100%=40%.
∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人 .
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
24、 (1)72°,见解析;(2)7280;(3).
【解析】
(1)根据题意列式计算,补全条形统计图即可;
(2)根据题意列式计算即可;
(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率.
【详解】
(1)扇形统计图中玉兰所对的圆心角为360°×(1-40%-15%-25%)=72°
月季的株数为2000×90%-380-422-270=728(株),
补全条形统计图如图所示:
(2)月季的成活率为
所以月季成活株数为8000×91%=7280(株).
故答案为:7280.
(3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A、B、C、D表示,画树状图如下:
所有等可能的情况有12种,其中恰好选到成活率较高的两类花苗有2种.
∴P(恰好选到成活率较高的两类花苗)
【点睛】
此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.
25、(1)x1=1+,x1=1﹣;(1)x1=3,x1=.
【解析】
(1)配方法解;
(1)因式分解法解.
【详解】
(1)x1﹣1x﹣1=2,
x1﹣1x+1=1+1,
(x﹣1)1=3,
x﹣1= ,
x=1,
x1=1,x1=1﹣,
(1)(x+1)1=4(x﹣1)1.
(x+1)1﹣4(x﹣1)1=2.
(x+1)1﹣[1(x﹣1)]1=2.
(x+1)1﹣(1x﹣1)1=2.
(x+1﹣1x+1)(x+1+1x﹣1)=2.
(﹣x+3)(3x﹣1)=2.
x1=3,x1=.
【点睛】
考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.
26、(1)详见解析;(2)80°.
【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
【解析】
(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;
(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
【详解】
证明:(1)∵AC=AD,
∴∠ACD=∠ADC,
又∵∠BCD=∠EDC=90°,
∴∠ACB=∠ADE,
在△ABC和△AED中,
,
∴△ABC≌△AED(SAS);
解:(2)当∠B=140°时,∠E=140°,
又∵∠BCD=∠EDC=90°,
∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.
【点睛】
考点:全等三角形的判定与性质.
27、25%
【解析】
首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.
【详解】
设这两年中获奖人次的平均年增长率为x,
根据题意得:48+48(1+x)+48(1+x)2=183,
解得:x1==25%,x2=﹣(不符合题意,舍去).
答:这两年中获奖人次的年平均年增长率为25%
2023-2024学年山东省东营垦利区四校联考数学八上期末调研模拟试题含答案: 这是一份2023-2024学年山东省东营垦利区四校联考数学八上期末调研模拟试题含答案,共7页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。
2023年山东省东营市垦利区中考数学一模试卷(含解析): 这是一份2023年山东省东营市垦利区中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
山东省东营市垦利区六校2022年中考联考数学试题含解析: 这是一份山东省东营市垦利区六校2022年中考联考数学试题含解析,共17页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。