青海省大通县2022年中考猜题数学试卷含解析
展开
这是一份青海省大通县2022年中考猜题数学试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数中负数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列各式正确的是( )
A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣2018
2.下列式子中,与互为有理化因式的是( )
A. B. C. D.
3.计算的值( )
A.1 B. C.3 D.
4.如图,中,,且,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的
A. B. C. D.
5.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是( )
A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>3
6.下列各数中负数是( )
A.﹣(﹣2) B.﹣|﹣2| C.(﹣2)2 D.﹣(﹣2)3
7.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1.若S2=48,S1=9,则S1的值为( )
A.18 B.12 C.9 D.1
8.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )
A. B. C. D.
9.如图,在中,,,,点在以斜边为直径的半圆上,点是的三等分点,当点沿着半圆,从点运动到点时,点运动的路径长为( )
A.或 B.或 C.或 D.或
10.方程x2﹣kx+1=0有两个相等的实数根,则k的值是( )
A.2 B.﹣2 C.±2 D.0
二、填空题(共7小题,每小题3分,满分21分)
11.八位女生的体重(单位:kg)分别为36、42、38、40、42、35、45、38,则这八位女生的体重的中位数为_____kg.
12.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为__________.
13.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=___________.
14.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 .
15.观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有___个★.
16.计算:(π﹣3)0﹣2-1=_____.
17.若与是同类项,则的立方根是 .
三、解答题(共7小题,满分69分)
18.(10分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?
19.(5分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.
(1)求证:CD∥AB;
(2)填空:
①当∠DAE= 时,四边形ADFP是菱形;
②当∠DAE= 时,四边形BFDP是正方形.
20.(8分)如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F.
(1)证明:△BOE≌△DOF;
(2)当EF⊥AC时,求证四边形AECF是菱形.
21.(10分)解不等式组,并把它的解集表示在数轴上.
22.(10分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.
(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.
(1)C(4,),D(4,),E(4,)三点中,点 是点A,B关于直线x=4的等角点;
(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;
(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).
23.(12分)如图 1,在等腰△ABC 中,AB=AC,点 D,E 分别为 BC,AB 的中点,连接 AD.在线段 AD 上任取一点 P,连接 PB,PE.若 BC=4,AD=6,设 PD=x(当点 P 与点 D 重合时,x 的值为 0),PB+PE=y.
小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:
(1)通过取点、画图、计算,得到了 x 与 y 的几组值,如下表:
x
0
1
2
3
4
5
6
y
5.2
4.2
4.6
5.9
7.6
9.5
说明:补全表格时,相关数值保留一位小数.(参考数据:≈1.414,≈1.732,≈2.236)
(2)建立平面直角坐标系(图 2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)求函数 y 的最小值(保留一位小数),此时点 P 在图 1 中的什么位置.
24.(14分)计算:2﹣1+|﹣|++2cos30°
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答.
【详解】
选项A,﹣(﹣2018)=2018,故选项A正确;
选项B,|﹣2018|=2018,故选项B错误;
选项C,20180=1,故选项C错误;
选项D,2018﹣1= ,故选项D错误.
故选A.
【点睛】
本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.
2、B
【解析】
直接利用有理化因式的定义分析得出答案.
【详解】
∵()(,)
=12﹣2,
=10,
∴与互为有理化因式的是:,
故选B.
【点睛】
本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.
3、A
【解析】
根据有理数的加法法则进行计算即可.
【详解】
故选:A.
【点睛】
本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.
4、D
【解析】
Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.
【详解】
解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,
∴∠AOB=∠A=45°,
∵CD⊥OB,
∴CD∥AB,
∴∠OCD=∠A,
∴∠AOD=∠OCD=45°,
∴OD=CD=t,
∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).
故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;
故选D.
【点睛】
本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.
5、B
【解析】
试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0),
所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.
故选B.
考点:二次函数的图象.106144
6、B
【解析】
首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.
【详解】
A、-(-2)=2,是正数;
B、-|-2|=-2,是负数;
C、(-2)2=4,是正数;
D、-(-2)3=8,是正数.
故选B.
【点睛】
此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键.
7、D
【解析】
过A作AH∥CD交BC于H,根据题意得到∠BAE=90°,根据勾股定理计算即可.
【详解】
∵S2=48,∴BC=4,过A作AH∥CD交BC于H,则∠AHB=∠DCB.
∵AD∥BC,∴四边形AHCD是平行四边形,∴CH=BH=AD=2,AH=CD=1.
∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.
故选D.
【点睛】
本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.
8、B
【解析】
根据简单概率的计算公式即可得解.
【详解】
一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.
故选B.
考点:简单概率计算.
9、A
【解析】
根据平行线的性质及圆周角定理的推论得出点M的轨迹是以EF为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.
【详解】
当点D与B重合时,M与F重合,当点D与A重合时,M与E重合,连接BD,FM,AD,EM,
∵
∴
∵AB是直径
即
∴
∴点M的轨迹是以EF为直径的半圆,
∵
∴以EF为直径的圆的半径为1
∴点M运动的路径长为
当 时,同理可得点M运动的路径长为
故选:A.
【点睛】
本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键.
10、C
【解析】
根据已知得出△=(﹣k)2﹣4×1×1=0,解关于k的方程即可得.
【详解】
∵方程x2﹣kx+1=0有两个相等的实数根,
∴△=(﹣k)2﹣4×1×1=0,
解得:k=±2,
故选C.
【点睛】
本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无实数根.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
根据中位数的定义,结合图表信息解答即可.
【详解】
将这八位女生的体重重新排列为:35、36、38、38、40、42、42、45,
则这八位女生的体重的中位数为=1kg,
故答案为1.
【点睛】
本题考查了中位数,确定中位数的时候一定要先排好顺序,然后再根据个数是奇数或偶数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数.
12、4
【解析】
首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时,点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.
【详解】
在Rt△AOB中,∵∠ABO=30°,AO=1,
∴AB=2,BO=
①当点P从O→B时,如图1、图2所示,点Q运动的路程为,
②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°
∵∠ABO=30°
∴∠BAO=60°
∴∠OQD=90°﹣60°=30°
∴AQ=2AC,
又∵CQ=,
∴AQ=2
∴OQ=2﹣1=1,则点Q运动的路程为QO=1,
③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,
④当点P从A→O时,点Q运动的路程为AO=1,
∴点Q运动的总路程为:+1+2﹣+1=4
故答案为4.
考点:解直角三角形
13、-1.
【解析】
解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案为-1.
14、.
【解析】
试题分析:画树状图为:
共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率==.故答案为.
考点:列表法与树状图法.
15、
【解析】
分别求出第1个、第2个、第3个、第4个图形中★的个数,得到第5个图形中★的个数,进而找到规律,得出第n个图形中★的个数,即可求解.
【详解】
第1个图形中有1+3×1=4个★,
第2个图形中有1+3×2=7个★,
第3个图形中有1+3×3=10个★,
第4个图形中有1+3×4=13个★,
第5个图形中有1+3×5=16个★,
…
第n个图形中有1+3×n=(3n+1)个★.
故答案是:1+3n.
【点睛】
考查了规律型:图形的变化类;根据图形中变化的量和n的关系与不变的量得到图形中★的个数与n的关系是解决本题的关键.
16、
【解析】
分别利用零指数幂a0=1(a≠0),负指数幂a-p=(a≠0)化简计算即可.
【详解】
解:(π﹣3)0﹣2-1=1-=.
故答案为:.
【点睛】
本题考查了零指数幂和负整数指数幂的运算,掌握运算法则是解题关键.
17、2.
【解析】
试题分析:若与是同类项,则:,解方程得:.∴=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.
考点:2.立方根;2.合并同类项;3.解二元一次方程组;4.综合题.
三、解答题(共7小题,满分69分)
18、(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程.
【解析】
(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;
(2)设乙队施工y天完成该项工程,根据题意列不等式解不等式即可.
【详解】
(1)由题意知,甲队单独施工完成该项工程所需时间为1÷=90(天).
设乙队单独施工需要x天完成该项工程,则
,
去分母,得x+1=2x.
解得x=1.
经检验x=1是原方程的解.
答:乙队单独施工需要1天完成.
(2)设乙队施工y天完成该项工程,则
1-
解得y≥2.
答:乙队至少施工l8天才能完成该项工程.
19、(1)详见解析;(2)①67.5°;②90°.
【解析】
(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;
(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;
②根据四边形BFDP是正方形,可以求得∠DAE的度数.
【详解】
(1)证明:连接OD,如图所示,
∵射线DC切⊙O于点D,
∴OD⊥CD,
即∠ODF=90°,
∵∠AED=45°,
∴∠AOD=2∠AED=90°,
∴∠ODF=∠AOD,
∴CD∥AB;
(2)①连接AF与DP交于点G,如图所示,
∵四边形ADFP是菱形,∠AED=45°,OA=OD,
∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,
∴∠AGE=90°,∠DAO=45°,
∴∠EAG=45°,∠DAG=∠PEG=22.5°,
∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,
故答案为:67.5°;
②∵四边形BFDP是正方形,
∴BF=FD=DP=PB,
∠DPB=∠PBF=∠BFD=∠FDP=90°,
∴此时点P与点O重合,
∴此时DE是直径,
∴∠EAD=90°,
故答案为:90°.
【点睛】
本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.
20、(1)(2)证明见解析
【解析】
(1)根据矩形的性质,通过“角角边”证明三角形全等即可;
(2)根据题意和(1)可得AC与EF互相垂直平分,所以四边形AECF是菱形.
【详解】
(1)证明:∵四边形ABCD是矩形,
∴OB=OD,AE∥CF,
∴∠E=∠F(两直线平行,内错角相等),
在△BOE与△DOF中,
,
∴△BOE≌△DOF(AAS).
(2)
证明:∵四边形ABCD是矩形,
∴OA=OC,
又∵由(1)△BOE≌△DOF得,OE=OF,
∴四边形AECF是平行四边形,
又∵EF⊥AC,
∴四边形AECF是菱形.
21、不等式组的解是x≥3;图见解析
【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:
∵解不等式①,得x≥3,
解不等式②,得x≥-1.5,
∴不等式组的解是x≥3,
在数轴上表示为:
.
【点睛】
本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.
22、(1)C(2)(3)b<﹣且b≠﹣2或b>
【解析】
(1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=
根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.
【详解】
(1)点B关于直线x=4的对称点为B′(10,﹣),
∴直线AB′解析式为:y=﹣,
当x=4时,y=,
故答案为:C
(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P
作BH⊥l于点H
∵点A和A′关于直线l对称
∴∠APG=∠A′PG
∵∠BPH=∠A′PG
∴∠APG=∠BPH
∵∠AGP=∠BHP=90°
∴△AGP∽△BHP
∴,即,
∴mn=2,即m=,
∵∠APB=α,AP=AP′,
∴∠A=∠A′=,
在Rt△AGP中,tan
(3)如图,当点P位于直线AB的右下方,∠APB=60°时,
点P在以AB为弦,所对圆周为60°,且圆心在AB下方
若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
由对称性可知:∠APQ=∠A′PQ,
又∠APB=60°
∴∠APQ=∠A′PQ=60°
∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°
∴∠BAQ=60°=∠AQB=∠ABQ
∴△ABQ是等边三角形
∵线段AB为定线段
∴点Q为定点
若直线y=ax+b(a≠0)与圆相切,易得P、Q重合
∴直线y=ax+b(a≠0)过定点Q
连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N
∵A(2,),B(﹣2,﹣)
∴OA=OB=
∵△ABQ是等边三角形
∴∠AOQ=∠BOQ=90°,OQ=,
∴∠AOM+∠NOD=90°
又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO
∵∠AMO=∠ONQ=90°
∴△AMO∽△ONQ
∴,
∴,
∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)
设直线BQ解析式为y=kx+b
将B、Q坐标代入得
,
解得
,
∴直线BQ的解析式为:y=﹣,
设直线AQ的解析式为:y=mx+n,
将A、Q两点代入,
解得 ,
∴直线AQ的解析式为:y=﹣3,
若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,
若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,
又∵y=ax+b(a≠0),且点P位于AB右下方,
∴b<﹣ 且b≠﹣2或b>.
【点睛】
本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.
23、(1)4.5(2)根据数据画图见解析;(3)函数 y 的最小值为4.2,线段AD上靠近D点三等分点处.
【解析】
(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.
【详解】
(1)根据题意,作图得,y=4.5故答案为:4.5
(2)根据数据画图得
(3)根据图象,函数 y 的最小值为 4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.
【点睛】
本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.
24、+4.
【解析】
原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值.
【详解】
原式=++2+2×=+4.
【点睛】
本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键.
相关试卷
这是一份2022年广东省广外大附中中考数学猜题卷含解析,共19页。试卷主要包含了的值是,﹣3的相反数是等内容,欢迎下载使用。
这是一份2022届青海省中考猜题数学试卷含解析,共17页。试卷主要包含了将抛物线y=﹣,五个新篮球的质量,平面直角坐标系中的点P,下列计算正确的是等内容,欢迎下载使用。
这是一份2021-2022学年青海省海西中考数学猜题卷含解析,共25页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,在同一平面内,下列说法等内容,欢迎下载使用。