青海省西宁市2021-2022学年中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )
A. B. C. D.
2.下列式子一定成立的是( )
A.2a+3a=6a B.x8÷x2=x4
C. D.(﹣a﹣2)3=﹣
3.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是( )
A.30° B.60° C.30°或150° D.60°或120°
4.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是( )
A.6 B.3.5 C.2.5 D.1
5.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是( )
A.2k-2 B.k-1 C.k D.k+1
6.下列说法中,正确的是( )
A.不可能事件发生的概率为0
B.随机事件发生的概率为
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
7.一个多边形的每个内角都等于120°,则这个多边形的边数为( )
A.4 B.5 C.6 D.7
8.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是( )
A. B. C. D.
9.下列实数0,,,π,其中,无理数共有( )
A.1个 B.2个 C.3个 D.4个
10.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.
12.方程的解是__________.
13.某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为_____元.
14.如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E为边OA上的一个动点,当△CDE的周长最小时,则点E的坐标____________.
15.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.
16.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.
三、解答题(共8题,共72分)
17.(8分)先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.
18.(8分)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.
(1)求一件A型、B型丝绸的进价分别为多少元?
(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.
①求m的取值范围.
②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式.
19.(8分)某商城销售A,B两种自行车型自行车售价为2 100元辆,B型自行车售价为1 750元辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.
求每辆A,B两种自行车的进价分别是多少?
现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.
20.(8分)计算:﹣(﹣2)2+|﹣3|﹣20180×
21.(8分)如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点分别在坐标轴的正半轴上, ,点在直线上,直线与折线有公共点.点的坐标是 ;若直线经过点,求直线的解析式;对于一次函数,当随的增大而减小时,直接写出的取值范围.
22.(10分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.
(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.
23.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.
(1)求此抛物线的解析式及顶点D的坐标;
(2)点M是抛物线上的动点,设点M的横坐标为m.
①当∠MBA=∠BDE时,求点M的坐标;
②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.
24.如图1,图2分别是某款篮球架的实物图与示意图,已知底座BC=1.5米,底座BC与支架AC所成的角∠ACB=60°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.3米,篮板底部支架HE与支架AF所成的角∠FHE=45°,求篮筐D到地面的距离.(精确到0.01米参考数据:≈1.73,≈1.41)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据中心对称图形的概念进行分析.
【详解】
A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项正确;
D、不是中心对称图形,故此选项错误;
故选:C.
【点睛】
考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
2、D
【解析】
根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.
【详解】
解:A:2a+3a=(2+3)a=5a,故A错误;
B:x8÷x2=x8-2=x6,故B错误;
C:=,故C错误;
D:(-a-2)3=-a-6=-,故D正确.
故选D.
【点睛】
本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.
3、D
【解析】
【分析】由图可知,OA=10,OD=1.根据特殊角的三角函数值求出∠AOB的度数,再根据圆周定理求出∠C的度数,再根据圆内接四边形的性质求出∠E的度数即可.
【详解】由图可知,OA=10,OD=1,
在Rt△OAD中,
∵OA=10,OD=1,AD==,
∴tan∠1=,∴∠1=60°,
同理可得∠2=60°,
∴∠AOB=∠1+∠2=60°+60°=120°,
∴∠C=60°,
∴∠E=180°-60°=120°,
即弦AB所对的圆周角的度数是60°或120°,
故选D.
【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.
4、C
【解析】
因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.
【详解】
(1)将这组数据从小到大的顺序排列为2,3,4,5,x,
处于中间位置的数是4,
∴中位数是4,
平均数为(2+3+4+5+x)÷5,
∴4=(2+3+4+5+x)÷5,
解得x=6;符合排列顺序;
(2)将这组数据从小到大的顺序排列后2,3,4,x,5,
中位数是4,
此时平均数是(2+3+4+5+x)÷5=4,
解得x=6,不符合排列顺序;
(3)将这组数据从小到大的顺序排列后2,3,x,4,5,
中位数是x,
平均数(2+3+4+5+x)÷5=x,
解得x=3.5,符合排列顺序;
(4)将这组数据从小到大的顺序排列后2,x,3,4,5,
中位数是3,
平均数(2+3+4+5+x)÷5=3,
解得x=1,不符合排列顺序;
(5)将这组数据从小到大的顺序排列后x,2,3,4,5,
中位数是3,
平均数(2+3+4+5+x)÷5=3,
解得x=1,符合排列顺序;
∴x的值为6、3.5或1.
故选C.
【点睛】
考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
5、A
【解析】
先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.
【详解】
∵0<k<1,
∴k-1<0,
∴此函数是减函数,
∵1≤x≤1,
∴当x=1时,y最小=1(k-1)+1=1k-1.
故选A.
【点睛】
本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.
6、A
【解析】
试题分析:不可能事件发生的概率为0,故A正确;
随机事件发生的概率为在0到1之间,故B错误;
概率很小的事件也可能发生,故C错误;
投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;
故选A.
考点:随机事件.
7、C
【解析】
试题解析:∵多边形的每一个内角都等于120°,
∴多边形的每一个外角都等于180°-120°=10°,
∴边数n=310°÷10°=1.
故选C.
考点:多边形内角与外角.
8、B
【解析】
根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.
【详解】
解:∵矩形OABC,
∴CB∥x轴,AB∥y轴.
∵点B坐标为(6,1),
∴D的横坐标为6,E的纵坐标为1.
∵D,E在反比例函数的图象上,
∴D(6,1),E(,1),
∴BE=6﹣=,BD=1﹣1=3,
∴ED==.连接BB′,交ED于F,过B′作B′G⊥BC于G.
∵B,B′关于ED对称,
∴BF=B′F,BB′⊥ED,
∴BF•ED=BE•BD,即BF=3×,
∴BF=,
∴BB′=.
设EG=x,则BG=﹣x.
∵BB′2﹣BG2=B′G2=EB′2﹣GE2,
∴,
∴x=,
∴EG=,
∴CG=,
∴B′G=,
∴B′(,﹣),
∴k=.
故选B.
【点睛】
本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.
9、B
【解析】
根据无理数的概念可判断出无理数的个数.
【详解】
解:无理数有:,.
故选B.
【点睛】
本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
10、B
【解析】
根据轴对称图形的概念对各选项分析判断即可得出答案.
【详解】
A.不是轴对称图形,故本选项错误;
B.是轴对称图形,故本选项正确;
C.不是轴对称图形,故本选项错误;
D.不是轴对称图形,故本选项错误.
故选B.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、小林
【解析】
观察图形可知,小林的成绩波动比较大,故小林是新手.
故答案是:小林.
12、x=1
【解析】
将方程两边平方后求解,注意检验.
【详解】
将方程两边平方得x-3=4,
移项得:x=1,
代入原方程得=2,原方程成立,
故方程=2的解是x=1.
故本题答案为:x=1.
【点睛】
在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.
13、17
【解析】
根据饼状图求出25元所占比重为20%,再根据加权平均数求法即可解题.
【详解】
解:1-30%-50%=20%,
∴.
【点睛】
本题考查了加权平均数的计算方法,属于简单题,计算25元所占权比是解题关键.
14、 (1,0)
【解析】
分析:由于C、D是定点,则CD是定值,如果的周长最小,即有最小值.为此,作点D关于x轴的对称点D′,当点E在线段CD′上时的周长最小.
详解:
如图,作点D关于x轴的对称点D′,连接CD′与x轴交于点E,连接DE.
若在边OA上任取点E′与点E不重合,连接CE′、DE′、D′E′
由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,
可知△CDE的周长最小,
∵在矩形OACB中,OA=3,OB=4,D为OB的中点,
∴BC=3,D′O=DO=2,D′B=6,
∵OE∥BC,
∴Rt△D′OE∽Rt△D′BC,有
∴OE=1,
∴点E的坐标为(1,0).
故答案为:(1,0).
点睛:考查轴对称-最短路线问题, 坐标与图形性质,相似三角形的判定与性质等,找出点E的位置是解题的关键.
15、1-1.
【解析】
将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此题得解.
【详解】
将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.
∵AB=AC=2,∠BAC=120°,
∴∠ACB=∠B=∠ACF=10°,
∴∠ECG=60°.
∵CF=BD=2CE,
∴CG=CE,
∴△CEG为等边三角形,
∴EG=CG=FG,
∴∠EFG=∠FEG=∠CGE=10°,
∴△CEF为直角三角形.
∵∠BAC=120°,∠DAE=60°,
∴∠BAD+∠CAE=60°,
∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.
在△ADE和△AFE中,
,
∴△ADE≌△AFE(SAS),
∴DE=FE.
设EC=x,则BD=CF=2x,DE=FE=6-1x,
在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,
EF==x,
∴6-1x=x,
x=1-,
∴DE=x=1-1.
故答案为:1-1.
【点睛】
本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键.
16、或或1
【解析】
如图所示:
①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=;
②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底边AP===;
③当PA=PE时,底边AE=1;
综上所述:等腰三角形AEP的对边长为或或1;
故答案为或或1.
三、解答题(共8题,共72分)
17、-5
【解析】
根据分式的运算法则以及实数的运算法则即可求出答案.
【详解】
当x=sin30°+2﹣1+时,
∴x=++2=3,
原式=÷==﹣5.
【点睛】
本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
18、(1)一件A型、B型丝绸的进价分别为500元,400元;(2)①,②.
【解析】
(1)根据题意应用分式方程即可;
(2)①根据条件中可以列出关于m的不等式组,求m的取值范围;②本问中,首先根据题意,可以先列出销售利润y与m的函数关系,通过讨论所含字母n的取值范围,得到w与n的函数关系.
【详解】
(1)设型丝绸的进价为元,则型丝绸的进价为元,
根据题意得:,
解得,
经检验,为原方程的解,
,
答:一件型、型丝绸的进价分别为500元,400元.
(2)①根据题意得:
,
的取值范围为:,
②设销售这批丝绸的利润为,
根据题意得:
,
,
(Ⅰ)当时,,
时,
销售这批丝绸的最大利润;
(Ⅱ)当时,,
销售这批丝绸的最大利润;
(Ⅲ)当时,
当时,
销售这批丝绸的最大利润.
综上所述:.
【点睛】
本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.
19、(1)每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.
【解析】
(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+10)元,根据题意列出方程,求出方程的解即可得到结果;
(2)由总利润=单辆利润×辆数,列出y与x的关系式,利用一次函数性质确定出所求即可.
【详解】
(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+10)元,
根据题意,得=,
解得x=1600,
经检验,x=1600是原方程的解,
x+10=1 600+10=2 000,
答:每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;
(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,
根据题意,得,
解得:33≤m≤1,
∵m为正整数,
∴m=34,35,36,37,38,39,1.
∵y=﹣50m+15000,k=﹣50<0,
∴y随m的增大而减小,∴当m=34时,y有最大值,
最大值为:﹣50×34+15000=13300(元).
答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.
【点睛】
本题主要考查一次函数的应用、分式方程的应用及一元一次不等式组的应用.仔细审题,找出题目中的数量关系是解答本题的关键.
20、﹣1
【解析】
根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.
【详解】
原式=﹣1+3﹣1×3=﹣1.
【点睛】
本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键.
21、(1);(2);(3)
【解析】
(1)OA=6,即BC=6,代入,即可得出点B的坐标
(2)将点B的坐标代入直线l中求出k即可得出解析式
(3)一次函数,必经过,要使y随x的增大而减小,即y值为,分别代入即可求出k的值.
【详解】
解:∵OA=6,矩形OABC中,BC=OA
∴BC=6
∵点B在直线上,
,解得x=8
故点B的坐标为(8,6)
故答案为(8,6)
(2)把点的坐标代入得,
解得:
∴
(3))∵一次函数,必经过),要使y随x的增大而减小
∴y值为
∴代入,
解得.
【点睛】
本题主要考待定系数法求一次函数解析式,关键要灵活运用一次函数图象上点的坐标特征进行解题.
22、(1)见解析;(2)见解析.
【解析】
试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;
(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.
试题解析:
证明:(1)选取①②,
∵在△BEO和△DFO中,
∴△BEO≌△DFO(ASA);
(2)由(1)得:△BEO≌△DFO,
∴EO=FO,BO=DO,
∵AE=CF,
∴AO=CO,
∴四边形ABCD是平行四边形.
点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.
23、(1)(1,4)(2)①点M坐标(﹣,)或(﹣,﹣);②m的值为 或
【解析】
(1)利用待定系数法即可解决问题;
(2)①根据tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.
【详解】
解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,
得到,解得,
∴抛物线的解析式为y=﹣x2+2x+3,
∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,
∴顶点D坐标(1,4);
(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),
∴MG=|﹣m2+2m+3|,BG=3﹣m,
∴tan∠MBA=,
∵DE⊥x轴,D(1,4),
∴∠DEB=90°,DE=4,OE=1,
∵B(3,0),
∴BE=2,
∴tan∠BDE==,
∵∠MBA=∠BDE,
∴=,
当点M在x轴上方时, =,
解得m=﹣或3(舍弃),
∴M(﹣,),
当点M在x轴下方时, =,
解得m=﹣或m=3(舍弃),
∴点M(﹣,﹣),
综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);
②如图中,∵MN∥x轴,
∴点M、N关于抛物线的对称轴对称,
∵四边形MPNQ是正方形,
∴点P是抛物线的对称轴与x轴的交点,即OP=1,
易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,
当﹣m2+2m+3=1﹣m时,解得m=,
当﹣m2+2m+3=m﹣1时,解得m=,
∴满足条件的m的值为或.
【点睛】
本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
24、3.05米
【解析】
延长FE交CB的延长线于M, 过A作AG⊥FM于G, 解直角三角形即可得到正确结论.
【详解】
解:
如图:延长FE交CB的延长线于M,过A作AG⊥FM于G,
在Rt△ABC中,tan∠ACB=,
∴AB=BC•tan60°=1.5×1.73=2.595,
∴GM=AB=2.595,
在Rt△AGF中,∵∠FAG=∠FHE=45°,sin∠FAG=,
∴sin45°=,
∴FG=1.76,
∴DM=FG+GM﹣DF≈3.05米.
答:篮框D到地面的距离是3.05米.
【点睛】
本题主要考查直角三角形和三角函数,构造合适的辅助线是本题解题的关键.
青海省西宁市中考数学试卷(含解析版): 这是一份青海省西宁市中考数学试卷(含解析版),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
青海省西宁市城区2021年中考真题数学试卷(含解析): 这是一份青海省西宁市城区2021年中考真题数学试卷(含解析),共24页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2023年青海省西宁市城区中考数学试卷(含解析): 这是一份2023年青海省西宁市城区中考数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。