内蒙古呼和浩特实验教育集团2021-2022学年中考二模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )
A. B.或
C. D.或
2.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是( )
A. B. C. D.
3.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )
A. B. C. D.
4.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心,则折痕的长度为( )
A. B.2 C. D.
5.下列方程中,没有实数根的是( )
A. B.
C. D.
6.如果,那么( )
A. B. C. D.
7.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.
A.1 B.2 C.1 D.4
8.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程( )
A.10%x=330 B.(1﹣10%)x=330
C.(1﹣10%)2x=330 D.(1+10%)x=330
9.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为( )
A.280×103 B.28×104 C.2.8×105 D.0.28×106
10.在半径等于5 cm的圆内有长为cm的弦,则此弦所对的圆周角为
A.60° B.120° C.60°或120° D.30°或120°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E= .
12.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.
13.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分.
14.已知抛物线y=,那么抛物线在y轴右侧部分是_________(填“上升的”或“下降的”).
15.如果关于x的方程(m为常数)有两个相等实数根,那么m=______.
16.含角30°的直角三角板与直线,的位置关系如图所示,已知,∠1=60°,以下三个结论中正确的是____(只填序号).
①AC=2BC ②△BCD为正三角形 ③AD=BD
三、解答题(共8题,共72分)
17.(8分)某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x
1
2
3
4
5
6
7
8
9
价格y1(元/件)
560
580
600
620
640
660
680
700
720
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.
18.(8分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
(1)求证:四边形BFCE是平行四边形;
(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.
19.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
请根据所给信息,解答以下问题: 表中 ___ ;____ 请计算扇形统计图中B组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
20.(8分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上.
年龄组x
7
8
9
10
11
12
13
14
15
16
17
男生平均身高y
115.2
118.3
122.2
126.5
129.6
135.6
140.4
146.1
154.8
162.9
168.2
(1)该市男学生的平均身高从 岁开始增加特别迅速.
(2)求直线AB所对应的函数表达式.
(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?
21.(8分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.
22.(10分)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.
(1)求∠DOA的度数;
(2)求证:直线ED与⊙O相切.
23.(12分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是 (填方案一,方案二,或方案三),则B点坐标是 ,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.
24.某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
型号
载客量
租金单价
A
30人/辆
380元/辆
B
20人/辆
280元/辆
注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.求y与x的函数解析式,请直接写出x的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
分析:根据位似变换的性质计算即可.
详解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,
则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),
故选B.
点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
2、D
【解析】
先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.
【详解】
任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是.故选D.
【点睛】
本题主要考查概率的求法,熟练掌握概率的求法是解题的关键.
3、C
【解析】
根据各点在数轴上位置即可得出结论.
【详解】
由图可知,b A. ∵b B. ∵b0,故本选项错误;
C. ∵bb,故本选项正确;
D. ∵b 故选C.
4、C
【解析】
过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.
【详解】
过O作OC⊥AB,交圆O于点D,连接OA,
由折叠得到CD=OC=OD=1cm,
在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,
即AC2+1=4,
解得:AC=cm,
则AB=2AC=2cm.
故选C.
【点睛】
此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.
5、B
【解析】
分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.
【详解】
解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;
B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;
C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;
D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.
故选:B.
【点睛】
本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
6、B
【解析】
试题分析:根据二次根式的性质,由此可知2-a≥0,解得a≤2.
故选B
点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质可求解.
7、D
【解析】
①根据作图的过程可知,AD是∠BAC的平分线.故①正确.
②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.
又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,
∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.
③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.
④∵如图,在直角△ACD中,∠2=10°,∴CD=AD.
∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.
∴S△ABC=AC•BC=AC•AD=AC•AD.
∴S△DAC:S△ABC.故④正确.
综上所述,正确的结论是:①②③④,,共有4个.故选D.
8、D
【解析】
解:设上个月卖出x双,根据题意得:(1+10%)x=1.故选D.
9、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将280000用科学记数法表示为2.8×1.故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、C
【解析】
根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.
【详解】
如图所示,
∵OD⊥AB,
∴D为AB的中点,即AD=BD=,
在Rt△AOD中,OA=5,AD=,
∴sin∠AOD=,
又∵∠AOD为锐角,
∴∠AOD=60°,
∴∠AOB=120°,
∴∠ACB=∠AOB=60°,
又∵圆内接四边形AEBC对角互补,
∴∠AEB=120°,
则此弦所对的圆周角为60°或120°.
故选C.
【点睛】
此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、50°.
【解析】
解:连接DF,连接AF交CE于G,
∵EF为⊙O的切线,
∴∠OFE=90°,
∵AB为直径,H为CD的中点
∴AB⊥CD,即∠BHE=90°,
∵∠ACF=65°,
∴∠AOF=130°,
∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,
故答案为:50°.
12、1
【解析】
根据垂径定理求得BD,然后根据勾股定理求得即可.
【详解】
解:∵OD⊥BC,
∴BD=CD=BC=3,
∵OB=AB=5,
∴在Rt△OBD中,OD==1.
故答案为1.
【点睛】
本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.
13、1
【解析】
∵13份试卷成绩,结果如下:3个140分,4个1分,2个130分,2个120分,1个100分,1个80分,
∴第7个数是1分,
∴中位数为1分,
故答案为1.
14、上升的
【解析】
∵抛物线y=x2-1开口向上,对称轴为x=0 (y 轴),
∴在y 轴右侧部分抛物线呈上升趋势.
故答案为:上升的.
【点睛】
本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
15、1
【解析】
析:本题需先根据已知条件列出关于m的等式,即可求出m的值.
解答:解:∵x的方程x2-2x+m=0(m为常数)有两个相等实数根
∴△=b2-4ac=(-2)2-4×1?m=0
4-4m=0
m=1
故答案为1
16、②③
【解析】
根据平行线的性质以及等边三角形的性质即可求出答案.
【详解】
由题意可知:∠A=30°,∴AB=2BC,故①错误;
∵l1∥l2,∴∠CDB=∠1=60°.
∵∠CBD=60°,∴△BCD是等边三角形,故②正确;
∵△BCD是等边三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正确.
故答案为②③.
【点睛】
本题考查了平行的性质以及等边三角形的性质,解题的关键是熟练运用平行线的性质,等边三角形的性质,含30度角的直角三角形的性质,本题属于中等题型.
三、解答题(共8题,共72分)
17、(1)y1=20x+540,y2=10x+1;(2)去年4月销售该配件的利润最大,最大利润为450万元.
【解析】
(1)利用待定系数法,结合图象上点的坐标求出一次函数解析式即可;
(2)根据生产每件配件的人力成本为50元,其它成本30元,以及售价销量进而求出最大利润.
【详解】
(1)利用表格得出函数关系是一次函数关系:
设y1=kx+b,
∴
解得:
∴y1=20x+540,
利用图象得出函数关系是一次函数关系:
设y2=ax+c,
∴
解得:
∴y2=10x+1.
(2)去年1至9月时,销售该配件的利润w=p1(1000﹣50﹣30﹣y1),
=(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,
=﹣2( x﹣4)2+450,(1≤x≤9,且x取整数)
∵﹣2<0,1≤x≤9,∴当x=4时,w最大=450(万元);
去年10至12月时,销售该配件的利润w=p2(1000﹣50﹣30﹣y2)
=(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣1),
=( x﹣29)2,(10≤x≤12,且x取整数),
∵10≤x≤12时,∴当x=10时,w最大=361(万元),
∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.
【点睛】
此题主要考查了一次函数的应用,根据已知得出函数关系式以及利用函数增减性得出函数最值是解题关键.
18、(1)证明见试题解析;(2)1.
【解析】
试题分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;
(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.
试题解析:(1)∵AB=DC,∴AC=DB,
在△AEC和△DFB中,∴△AEC≌△DFB(SAS),
∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;
(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,
∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,
∴当BE=1时,四边形BFCE是菱形,
故答案为1.
【考点】
平行四边形的判定;菱形的判定.
19、(1)0.3,45;(2);(3)
【解析】
(1)根据频数的和为样本容量,频率的和为1,可直接求解;
(2)根据频率可得到百分比,乘以360°即可;
(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可.
【详解】
(1)a=0.3,b=45
(2)360°×0.3=108°
(3)列关系表格为:
由表格可知,满足题意的概率为:.
考点:1、频数分布表,2、扇形统计图,3、概率
20、(1)11;(2)y=3.6x+90;(3)该市18岁男生年龄组的平均身高大约是174cm左右.
【解析】
(1)根据统计图仔细观察即可得出结果(2)先设函数表达式,选取两个点带入求值即可(3)先设函数表达式,选取两个点带入求值,把带入预测即可.
【详解】
解:(1)由统计图可得,
该市男学生的平均身高从 11 岁开始增加特别迅速,
故答案为:11;
(2)设直线AB所对应的函数表达式
∵图象经过点
则,
解得.
即直线AB所对应的函数表达式:
(3)设直线CD所对应的函数表达式为:,
,得,
即直线CD所对应的函数表达式为:
把代入得
即该市18岁男生年龄组的平均身高大约是174cm左右.
【点睛】
此题重点考察学生对统计图和一次函数的应用,熟练掌握一次函数表达式的求法是解题的关键.
21、证明见解析.
【解析】
由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题.
【详解】
解:∵AD∥BC
∴∠ADB=∠DBC
∵DC⊥BC于点C,AE⊥BD于点E
∴∠C=∠AED=90°
又∵DB=DA
∴△AED≌△DCB(AAS)
∴AE=CD
【点睛】
本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.
22、(1)∠DOA =100°;(2)证明见解析.
【解析】
试题分析:(1)根据∠CBA=50°,利用圆周角定理即可求得∠DOA的度数;(2)连接OE,利用SSS证明△EAO≌△EDO,根据全等三角形的性质可得∠EDO=∠EAO=90°,即可证明直线ED与⊙O相切.
试题解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;
(2)证明:连接OE,
在△EAO和△EDO中,
AO=DO,EA=ED,EO=EO,
∴△EAO≌△EDO,
得到∠EDO=∠EAO=90°,
∴直线ED与⊙O相切.
考点:圆周角定理;全等三角形的判定及性质;切线的判定定理
23、 (1) 方案1; B(5,0); ;(2) 3.2m.
【解析】
试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式.
(2)把x=3代入抛物线的解析式,即可得到结论.
试题解析:解:方案1:(1)点B的坐标为(5,0),设抛物线的解析式为:.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:,∴抛物线的解析式为:;
(2)由题意:把代入,解得:=3.2,∴水面上涨的高度为3.2m.
方案2:(1)点B的坐标为(10,0).设抛物线的解析式为:.
由题意可以得到抛物线的顶点为(5,5),代入解析式可得:,∴抛物线的解析式为:;
(2)由题意:把代入解得:=3.2,∴水面上涨的高度为3.2m.
方案3:(1)点B的坐标为(5, ),由题意可以得到抛物线的顶点为(0,0).
设抛物线的解析式为:,把点B的坐标(5, ),代入解析式可得:,
∴抛物线的解析式为:;
(2)由题意:把代入解得:=,∴水面上涨的高度为3.2m.
24、 (1) 21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.
【解析】
(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据A
B两种车至少要能坐1441人即可得取x的取值范围;
(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.
【详解】
(1)由题意得y=380x+280(62-x)=100x+17360,
∵30x+20(62-x)≥1441,
∴x≥20.1,∴21≤x≤62且x为整数;
(2)由题意得100x+17360≤21940,
解得x≤45.8,∴21≤x≤45且x为整数,
∴共有25种租车方案,
∵k=100>0,∴y随x的增大而增大,
当x=21时,y有最小值, y最小=100×21+17360=19460,
故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.
【点睛】
本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.
2024年广东省深圳市南山实验教育集团中考数学二模试卷(含解析): 这是一份2024年广东省深圳市南山实验教育集团中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年广东省深圳市南山实验教育集团中考二模数学试题(含解析): 这是一份2023年广东省深圳市南山实验教育集团中考二模数学试题(含解析),共26页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
内蒙古呼和浩特实验教育集团2022年中考数学最后冲刺模拟试卷含解析: 这是一份内蒙古呼和浩特实验教育集团2022年中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,下列实数中,结果最大的是等内容,欢迎下载使用。