|试卷下载
搜索
    上传资料 赚现金
    蒙古北京八中学乌兰察布分校2021-2022学年中考数学模拟预测试卷含解析
    立即下载
    加入资料篮
    蒙古北京八中学乌兰察布分校2021-2022学年中考数学模拟预测试卷含解析01
    蒙古北京八中学乌兰察布分校2021-2022学年中考数学模拟预测试卷含解析02
    蒙古北京八中学乌兰察布分校2021-2022学年中考数学模拟预测试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    蒙古北京八中学乌兰察布分校2021-2022学年中考数学模拟预测试卷含解析

    展开
    这是一份蒙古北京八中学乌兰察布分校2021-2022学年中考数学模拟预测试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,点A,反比例函数是y=的图象在等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高
    A.—7℃ B.7℃ C.—1℃ D.1℃
    2.如图所示,在平面直角坐标系中,抛物线y=-x2+2x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+AP的最小值为( ).

    A.3 B. C. D.
    3.下面的图形中,既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    4.下列方程中,没有实数根的是( )
    A. B.
    C. D.
    5.点A(-1,),B(-2,)在反比例函数的图象上,则,的大小关系是( )
    A.> B.= C.< D.不能确定
    6.如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是( )

    A.着 B.沉 C.应 D.冷
    7.如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE•ED=3,BE=1,则⊙O的直径是(  )

    A.2 B. C.2 D.5
    8.如图,已知Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转,使点D落在射线CA上,DE的延长线交BC于F,则∠CFD的度数为(  )

    A.80° B.90° C.100° D.120°
    9.反比例函数是y=的图象在(  )
    A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限
    10.如图是二次函数的图象,有下面四个结论:;;;,其中正确的结论是    

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是________.

    12.如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90°至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_____.

    13.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是_____.

    14.已知一元二次方程x2-4x-3=0的两根为m,n,则-mn+= .
    15.在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为_____.
    16.已知m、n是一元二次方程x2+4x﹣1=0的两实数根,则=_____.
    三、解答题(共8题,共72分)
    17.(8分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由
    18.(8分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.
    (1)试判断CD与圆O的位置关系,并说明理由;
    (2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.

    19.(8分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
    (1)求证:△AEF是等腰直角三角形;
    (2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
    (3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.

    20.(8分)解不等式组:.
    21.(8分)如图1,在直角梯形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,过点C作CE⊥BP交直线BP于E.
    (1) 若,求证:;
    (2) 若AB=BC.
    ① 如图2,当点P与E重合时,求的值;
    ② 如图3,设∠DAP的平分线AF交直线BP于F,当CE=1,时,直接写出线段AF的长.

    22.(10分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.

    23.(12分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.求BF的长.

    24.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.求第一批悠悠球每套的进价是多少元;如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    求最高气温比最低气温高多少度,即是求最高气温与最低气温的差,这个实际问题可转化为减法运算,列算式计算即可.
    【详解】
    3-(-4)=3+4=7℃.
    故选B.
    2、A
    【解析】
    连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到点B,再利用配方法得到点A,得到OA的长度,判断△AOB为等边三角形,然后利用∠OAP=30°得到PH= AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.

    【详解】
    连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如图当y=0时-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB为等边三角形,∠OAP=30°得到PH= AP,因为AP垂直平分OB,所以PO=PB,所以OP+AP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=AB=3,所以最小值为3.
    故选A.
    【点睛】
    本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键.
    3、B
    【解析】试题解析:A. 是轴对称图形但不是中心对称图形
    B.既是轴对称图形又是中心对称图形;
    C.是中心对称图形,但不是轴对称图形;
    D.是轴对称图形不是中心对称图形;
    故选B.
    4、B
    【解析】
    分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.
    【详解】
    解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;
    B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;
    C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;
    D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.
    故选:B.
    【点睛】
    本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
    5、C
    【解析】
    试题分析:对于反比例函数y=,当k>0时,在每一个象限内,y随x的增大而减小,根据题意可得:-1>-2,则.
    考点:反比例函数的性质.
    6、A
    【解析】
    正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答
    【详解】
    这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对.
    故选:A
    【点睛】
    本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键
    7、C
    【解析】
    作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.
    【详解】
    解:作OH⊥AB于H,OG⊥CD于G,连接OA,
    由相交弦定理得,CE•ED=EA•BE,即EA×1=3,
    解得,AE=3,
    ∴AB=4,
    ∵OH⊥AB,
    ∴AH=HB=2,
    ∵AB=CD,CE•ED=3,
    ∴CD=4,
    ∵OG⊥CD,
    ∴EG=1,
    由题意得,四边形HEGO是矩形,
    ∴OH=EG=1,
    由勾股定理得,OA=,
    ∴⊙O的直径为,
    故选C.

    【点睛】
    此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.
    8、B
    【解析】
    根据旋转的性质得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根据三角形外角性质得出∠CFD=∠B+∠BEF,代入求出即可.
    【详解】
    解:∵将△ABC绕点A顺时针旋转得到△ADE,
    ∴△ABC≌△ADE,
    ∴∠B=∠D,
    ∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,
    ∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,
    ∴∠CFD=∠B+∠BEF=90°,
    故选:B.
    【点睛】
    本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键.
    9、B
    【解析】
    解:∵反比例函数是y=中,k=2>0,
    ∴此函数图象的两个分支分别位于一、三象限.
    故选B.
    10、D
    【解析】
    根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.
    【详解】
    ①根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故①正确.
    ②时,由图像可知此时,即,故②正确.
    ③由对称轴,可得,所以错误,故③错误;
    ④当时,由图像可知此时,即,将③中变形为,代入可得,故④正确.
    故答案选D.
    【点睛】
    本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、8
    【解析】
    如图,连接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解决问题.
    【详解】
    解:如图,连接OC.

    ∵AB是⊙O切线,
    ∴OC⊥AB,AC=BC,
    在Rt△ACO中,∵∠ACO=90°,OC=OD=2
    tan∠OAB=,
    ∴,
    ∴AC=4,
    ∴AB=2AC=8,
    故答案为8
    【点睛】
    本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.
    12、3﹣1
    【解析】
    通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明△PAB≌△QAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长.
    【详解】
    如图,当Q在对角线BD上时,BQ最小.
    连接BP,由旋转得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.
    ∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ长度的最小值为(3﹣1).

    故答案为3﹣1.
    【点睛】
    本题是圆的综合题.考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值.
    13、(3,2).
    【解析】
    根据题意得出y轴位置,进而利用正多边形的性质得出E点坐标.
    【详解】
    解:如图所示:∵A(0,a),
    ∴点A在y轴上,
    ∵C,D的坐标分别是(b,m),(c,m),
    ∴B,E点关于y轴对称,
    ∵B的坐标是:(﹣3,2),
    ∴点E的坐标是:(3,2).
    故答案为:(3,2).

    【点睛】
    此题主要考查了正多边形和圆,正确得出y轴的位置是解题关键.
    14、1
    【解析】
    试题分析:由m与n为已知方程的解,利用根与系数的关系求出m+n=4,mn=﹣3,将所求式子利用完全平方公式变形后,即﹣mn+=﹣3mn=16+9=1.
    故答案为1.
    考点:根与系数的关系.
    15、(﹣3,2)
    【解析】
    作出图形,然后写出点A′的坐标即可.
    【详解】
    解答:如图,点A′的坐标为(-3,2).
    故答案为(-3,2).

    【点睛】
    本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解.
    16、1
    【解析】
    先由根与系数的关系求出m•n及m+n的值,再把化为 的形式代入进行计算即可.
    【详解】
    ∵m、n是一元二次方程x2+1x﹣1=0的两实数根,
    ∴m+n=﹣1,m•n=﹣1,
    ∴== =1.
    故答案为1.
    【点睛】
    本题考查的是根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2= .

    三、解答题(共8题,共72分)
    17、(1)10%;(1)会跌破10000元/m1.
    【解析】
    (1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;
    (1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.
    【详解】
    (1)设11、11两月平均每月降价的百分率是x,
    则11月份的成交价是:14000(1-x),
    11月份的成交价是:14000(1-x)1,
    ∴14000(1-x)1=11340,
    ∴(1-x)1=0.81,
    ∴x1=0.1=10%,x1=1.9(不合题意,舍去)
    答:11、11两月平均每月降价的百分率是10%;
    (1)会跌破10000元/m1.
    如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:
    11340(1-x)1=11340×0.81=9184.5<10000,
    由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.
    【点睛】
    此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.
    18、(1)CD与圆O的位置关系是相切,理由详见解析;(2) AD=.
    【解析】
    (1)连接OC,求出OC和AD平行,求出OC⊥CD,根据切线的判定得出即可;
    (2)连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.
    【详解】
    (1)CD与圆O的位置关系是相切,
    理由是:连接OC,

    ∵OA=OC,
    ∴∠OCA=∠CAB,
    ∵∠CAB=∠CAD,
    ∴∠OCA=∠CAD,
    ∴OC∥AD,
    ∵CD⊥AD,
    ∴OC⊥CD,
    ∵OC为半径,
    ∴CD与圆O的位置关系是相切;
    (2)连接BC,

    ∵AB是⊙O的直径,
    ∴∠BCA=90°,
    ∵圆O的半径为3,
    ∴AB=6,
    ∵∠CAB=30°,

    ∵∠BCA=∠CDA=90°,∠CAB=∠CAD,
    ∴△CAB∽△DAC,



    【点睛】
    本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.
    19、(1)证明见解析;(2)证明见解析;(3)4.
    【解析】
    试题分析:(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;
    (2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;
    (3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.
    试题解析:解:(1)如图1.∵四边形ABFD是平行四边形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;
    (2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.
    (3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.

    点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.
    20、﹣4≤x<1
    【解析】
    先求出各不等式的
    【详解】

    解不等式x﹣1<2,得:x<1,
    解不等式2x+1≥x﹣1,得:x≥﹣4,
    则不等式组的解集为﹣4≤x<1.
    【点睛】
    考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    21、(1)证明见解析;(2)①;②3.
    【解析】
    (1) 过点A作AF⊥BP于F,根据等腰三角形的性质得到BF=BP,易证Rt△ABF∽Rt△BCE,根据相似三角形的性质得到,即可证明BP=CE.
    (2) ①延长BP、AD交于点F,过点A作AG⊥BP于G,证明△ABG≌△BCP,根据全等三角形的性质得BG=CP,设BG=1,则PG=PC=1,BC=AB=,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出的值;
    ② 延长BF、AD交于点G,过点A作AH⊥BE于H,证明△ABH≌△BCE,根据全等三角形的性质得BG=CP,设BH=BP=CE=1,又,得到PG=,BG=,根据射影定理得到AB2=BH·BG ,即可求出AB= ,根据勾股定理得到
    ,根据等腰直角三角形的性质得到.
    【详解】
    解:(1) 过点A作AF⊥BP于F
    ∵AB=AP
    ∴BF=BP,
    ∵Rt△ABF∽Rt△BCE

    ∴BP=CE.

    (2) ①延长BP、AD交于点F,过点A作AG⊥BP于G

    ∵AB=BC
    ∴△ABG≌△BCP(AAS)
    ∴BG=CP
    设BG=1,则PG=PC=1
    ∴BC=AB=
    在Rt△ABF中,由射影定理知,AB2=BG·BF=5
    ∴BF=5,PF=5-1-1=3

    ② 延长BF、AD交于点G,过点A作AH⊥BE于H
    ∵AB=BC
    ∴△ABH≌△BCE(AAS)
    设BH=BP=CE=1

    ∴PG=,BG=
    ∵AB2=BH·BG
    ∴AB=

    ∵AF平分∠PAD,AH平分∠BAP
    ∴∠FAH=∠BAD=45°
    ∴△AFH为等腰直角三角形


    【点睛】
    考查等腰三角形的性质,勾股定理,射影定理,平行线分线段成比例定理等,解题的关键是作出辅助线.难度较大.
    22、(1)50;(2)240;(3).
    【解析】
    用喜爱社会实践的人数除以它所占的百分比得到n的值;
    先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;
    画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.
    【详解】
    解:(1);
    (2)样本中喜爱看电视的人数为(人,

    所以估计该校喜爱看电视的学生人数为240人;
    (3)画树状图为:

    共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,
    所以恰好抽到2名男生的概率.
    【点睛】
    本题考查了列表法与树状图法;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.
    23、BF的长度是1cm.
    【解析】
    利用“两角法”证得△BEF∽△CDF,利用相似三角形的对应边成比例来求线段CF的长度.
    【详解】
    解:如图,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,
    ∴△BEF∽△CDF;
    ∴=,
    又∵AD=BC=260cm ,AB=CD=130cm ,AE=60cm
    ∴BE=70cm, CD=130cm,BC=260cm ,CF=(260-BF)cm
    ∴=,
    解得:BF=1.
    即:BF的长度是1cm.
    【点睛】
    本题主要考查相似三角形的判定和性质,关键要掌握:有两角对应相等的两三角形相似;两三角形相似,对应边的比相等.
    24、(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是1元.
    【解析】
    分析:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设每套悠悠球的售价为y元,根据销售收入-成本=利润结合全部售完后总利润不低于25%,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.
    详解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,
    根据题意得:

    解得:x=25,
    经检验,x=25是原分式方程的解.
    答:第一批悠悠球每套的进价是25元.
    (2)设每套悠悠球的售价为y元,
    根据题意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%,
    解得:y≥1.
    答:每套悠悠球的售价至少是1元.
    点睛:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式.

    相关试卷

    北京理工大附中分校2021-2022学年中考数学模拟预测试卷含解析: 这是一份北京理工大附中分校2021-2022学年中考数学模拟预测试卷含解析,共14页。试卷主要包含了若分式方程无解,则a的值为等内容,欢迎下载使用。

    2022年内蒙古北京八中学乌兰察布分校中考数学四模试卷含解析: 这是一份2022年内蒙古北京八中学乌兰察布分校中考数学四模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022届内蒙古乌兰察布市北京八中学分校中考数学四模试卷含解析: 这是一份2022届内蒙古乌兰察布市北京八中学分校中考数学四模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中为必然事件的是,有一组数据等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map